A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores
Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous...
Gespeichert in:
Veröffentlicht in: | Journal of clinical epidemiology 2005-02, Vol.58 (2), p.154-161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 2 |
container_start_page | 154 |
container_title | Journal of clinical epidemiology |
container_volume | 58 |
creator | Allore, Heather Tinetti, Mary E. Araujo, Katy L.B. Hardy, Susan Peduzzi, Peter |
description | Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists.
We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation.
The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach.
Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone. |
doi_str_mv | 10.1016/j.jclinepi.2004.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67391331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435604002343</els_id><sourcerecordid>67391331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-28aec7b1afb92d589b1e0f8f9d891ccb38f8d3b6759504e8afe6eca3321c3cea3</originalsourceid><addsrcrecordid>eNqFkd-K1TAQxoMo7nH1FZaA6F1r0jRtcudh8R8sKKjXIU0nuyk9SU3SXfatfERTz5EVb7yagfnNNx_zIXRBSU0J7d5M9WRm52FxdUNIWxNZE0IfoR0Vvai4bOhjtCNC8qplvDtDz1KaCtCTnj9FZ5R3gvSt3KGfe2x0ApzyOt5jG1Y_4nyjM9Y4wnWElFzwOEcAHNa8QLQhHmDEh3XObpkBbyZ0_Bt2Hi8RRmey89dFDMpw1rmM0o1b8AD5DqBgh0W7ouVzwrpc_RqM0_Pv9ksM41rWbwHvt-Kyg4STCeXEc_TE6jnBi1M9R9_fv_t2-bG6-vzh0-X-qjJt0-aqERpMP1BtB9mMXMiBArHCylFIaszAhBUjG7qeS05aENpCB0Yz1lDDDGh2jl4fdZcYfqyQsjq4ZGCetYewJtX1TFLGaAFf_gNOYY2-eFOUFKCXgvJCdUfKxJBSBKuW6A463hdIbYmqSf1JVG2JKiJVCawsXpzk16E8_mHtFGEBXp0AnYyebdTeuPTAdbzhpN-4t0cOytduHUSVjANvSlIRTFZjcP_z8guZtcgR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033179815</pqid></control><display><type>article</type><title>A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Allore, Heather ; Tinetti, Mary E. ; Araujo, Katy L.B. ; Hardy, Susan ; Peduzzi, Peter</creator><creatorcontrib>Allore, Heather ; Tinetti, Mary E. ; Araujo, Katy L.B. ; Hardy, Susan ; Peduzzi, Peter</creatorcontrib><description>Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists.
We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation.
The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach.
Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2004.09.001</identifier><identifier>PMID: 15680749</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Aged ; Biological and medical sciences ; CART ; Case studies ; Continuous outcomes ; Continuous predictors ; Cutpoint selection ; Data Interpretation, Statistical ; Epidemiology ; General aspects ; Geriatric Assessment ; Health Status Indicators ; Humans ; Joint surgery ; Linear Models ; Medical sciences ; Methodology ; Methods ; Multiple linear regression ; Older people ; Prospective Studies ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Regression Analysis ; Regression trees ; Safety ; Variables</subject><ispartof>Journal of clinical epidemiology, 2005-02, Vol.58 (2), p.154-161</ispartof><rights>2005 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-28aec7b1afb92d589b1e0f8f9d891ccb38f8d3b6759504e8afe6eca3321c3cea3</citedby><cites>FETCH-LOGICAL-c424t-28aec7b1afb92d589b1e0f8f9d891ccb38f8d3b6759504e8afe6eca3321c3cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033179815?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16525079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15680749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allore, Heather</creatorcontrib><creatorcontrib>Tinetti, Mary E.</creatorcontrib><creatorcontrib>Araujo, Katy L.B.</creatorcontrib><creatorcontrib>Hardy, Susan</creatorcontrib><creatorcontrib>Peduzzi, Peter</creatorcontrib><title>A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists.
We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation.
The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach.
Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone.</description><subject>Aged</subject><subject>Biological and medical sciences</subject><subject>CART</subject><subject>Case studies</subject><subject>Continuous outcomes</subject><subject>Continuous predictors</subject><subject>Cutpoint selection</subject><subject>Data Interpretation, Statistical</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Geriatric Assessment</subject><subject>Health Status Indicators</subject><subject>Humans</subject><subject>Joint surgery</subject><subject>Linear Models</subject><subject>Medical sciences</subject><subject>Methodology</subject><subject>Methods</subject><subject>Multiple linear regression</subject><subject>Older people</subject><subject>Prospective Studies</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Regression Analysis</subject><subject>Regression trees</subject><subject>Safety</subject><subject>Variables</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkd-K1TAQxoMo7nH1FZaA6F1r0jRtcudh8R8sKKjXIU0nuyk9SU3SXfatfERTz5EVb7yagfnNNx_zIXRBSU0J7d5M9WRm52FxdUNIWxNZE0IfoR0Vvai4bOhjtCNC8qplvDtDz1KaCtCTnj9FZ5R3gvSt3KGfe2x0ApzyOt5jG1Y_4nyjM9Y4wnWElFzwOEcAHNa8QLQhHmDEh3XObpkBbyZ0_Bt2Hi8RRmey89dFDMpw1rmM0o1b8AD5DqBgh0W7ouVzwrpc_RqM0_Pv9ksM41rWbwHvt-Kyg4STCeXEc_TE6jnBi1M9R9_fv_t2-bG6-vzh0-X-qjJt0-aqERpMP1BtB9mMXMiBArHCylFIaszAhBUjG7qeS05aENpCB0Yz1lDDDGh2jl4fdZcYfqyQsjq4ZGCetYewJtX1TFLGaAFf_gNOYY2-eFOUFKCXgvJCdUfKxJBSBKuW6A463hdIbYmqSf1JVG2JKiJVCawsXpzk16E8_mHtFGEBXp0AnYyebdTeuPTAdbzhpN-4t0cOytduHUSVjANvSlIRTFZjcP_z8guZtcgR</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Allore, Heather</creator><creator>Tinetti, Mary E.</creator><creator>Araujo, Katy L.B.</creator><creator>Hardy, Susan</creator><creator>Peduzzi, Peter</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20050201</creationdate><title>A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores</title><author>Allore, Heather ; Tinetti, Mary E. ; Araujo, Katy L.B. ; Hardy, Susan ; Peduzzi, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-28aec7b1afb92d589b1e0f8f9d891ccb38f8d3b6759504e8afe6eca3321c3cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aged</topic><topic>Biological and medical sciences</topic><topic>CART</topic><topic>Case studies</topic><topic>Continuous outcomes</topic><topic>Continuous predictors</topic><topic>Cutpoint selection</topic><topic>Data Interpretation, Statistical</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Geriatric Assessment</topic><topic>Health Status Indicators</topic><topic>Humans</topic><topic>Joint surgery</topic><topic>Linear Models</topic><topic>Medical sciences</topic><topic>Methodology</topic><topic>Methods</topic><topic>Multiple linear regression</topic><topic>Older people</topic><topic>Prospective Studies</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Regression Analysis</topic><topic>Regression trees</topic><topic>Safety</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allore, Heather</creatorcontrib><creatorcontrib>Tinetti, Mary E.</creatorcontrib><creatorcontrib>Araujo, Katy L.B.</creatorcontrib><creatorcontrib>Hardy, Susan</creatorcontrib><creatorcontrib>Peduzzi, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allore, Heather</au><au>Tinetti, Mary E.</au><au>Araujo, Katy L.B.</au><au>Hardy, Susan</au><au>Peduzzi, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>58</volume><issue>2</issue><spage>154</spage><epage>161</epage><pages>154-161</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists.
We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation.
The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach.
Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>15680749</pmid><doi>10.1016/j.jclinepi.2004.09.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2005-02, Vol.58 (2), p.154-161 |
issn | 0895-4356 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_67391331 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Aged Biological and medical sciences CART Case studies Continuous outcomes Continuous predictors Cutpoint selection Data Interpretation, Statistical Epidemiology General aspects Geriatric Assessment Health Status Indicators Humans Joint surgery Linear Models Medical sciences Methodology Methods Multiple linear regression Older people Prospective Studies Public health. Hygiene Public health. Hygiene-occupational medicine Regression Analysis Regression trees Safety Variables |
title | A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20case%20study%20found%20that%20a%20regression%20tree%20outperformed%20multiple%20linear%20regression%20in%20predicting%20the%20relationship%20between%20impairments%20and%20Social%20and%20Productive%20Activities%20scores&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Allore,%20Heather&rft.date=2005-02-01&rft.volume=58&rft.issue=2&rft.spage=154&rft.epage=161&rft.pages=154-161&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2004.09.001&rft_dat=%3Cproquest_cross%3E67391331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033179815&rft_id=info:pmid/15680749&rft_els_id=S0895435604002343&rfr_iscdi=true |