The role of radiotracer imaging in Parkinson disease

Radiotracer imaging (RTI) of the nigrostriatal dopaminergic system is a widely used but controversial biomarker in Parkinson disease (PD). Here the authors review the concepts of biomarker development and the evidence to support the use of four radiotracers as biomarkers in PD: [18F]fluorodopa PET,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 2005-01, Vol.64 (2), p.208-215
Hauptverfasser: RAVINA, B, EIDELBERG, D, GWINN-HARDY, K, MCFARLAND, H, INNIS, R, KATZ, R. G, KIEBURTZ, K, KISH, S. J, LANGE, N, LANGSTON, J. W, MAREK, K, MORIN, L, AHLSKOG, J. E, MOY, C, MURPHY, D, OERTEL, W. H, OLIVER, G, PALESCH, Y, POWERS, W, SEIBYL, J, SETHI, K. D, SHULTS, C. W, SHEEHY, P, ALBIN, R. L, STOESSL, A. J, HOLLOWAY, R, BROOKS, D. J, CARBON, M, DHAWAN, V, FEIGIN, A, FAHN, S, GUTTMAN, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 2
container_start_page 208
container_title Neurology
container_volume 64
creator RAVINA, B
EIDELBERG, D
GWINN-HARDY, K
MCFARLAND, H
INNIS, R
KATZ, R. G
KIEBURTZ, K
KISH, S. J
LANGE, N
LANGSTON, J. W
MAREK, K
MORIN, L
AHLSKOG, J. E
MOY, C
MURPHY, D
OERTEL, W. H
OLIVER, G
PALESCH, Y
POWERS, W
SEIBYL, J
SETHI, K. D
SHULTS, C. W
SHEEHY, P
ALBIN, R. L
STOESSL, A. J
HOLLOWAY, R
BROOKS, D. J
CARBON, M
DHAWAN, V
FEIGIN, A
FAHN, S
GUTTMAN, M
description Radiotracer imaging (RTI) of the nigrostriatal dopaminergic system is a widely used but controversial biomarker in Parkinson disease (PD). Here the authors review the concepts of biomarker development and the evidence to support the use of four radiotracers as biomarkers in PD: [18F]fluorodopa PET, (+)-[11C]dihydrotetrabenazine PET, [123I]beta-CIT SPECT, and [18F]fluorodeoxyglucose PET. Biomarkers used to study disease biology and facilitate drug discovery and early human trials rely on evidence that they are measuring relevant biologic processes. The four tracers fulfill this criterion, although they do not measure the number or density of dopaminergic neurons. Biomarkers used as diagnostic tests, prognostic tools, or surrogate endpoints must not only have biologic relevance but also a strong linkage to the clinical outcome of interest. No radiotracers fulfill these criteria, and current evidence does not support the use of imaging as a diagnostic tool in clinical practice or as a surrogate endpoint in clinical trials. Mechanistic information added by RTI to clinical trials may be difficult to interpret because of uncertainty about the interaction between the interventions and the tracer.
doi_str_mv 10.1212/01.wnl.0000149403.14458.7f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67382322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67382322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9274a451d8091ca9a10f7e8a98511a838b5c72587341708856235643db93345b3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRbK3-BQmC3hJ39nu9SbEqFPVQ0duy2Wzqaprobov474020LnM5XnfYR6EzgAXQIBcYii-26bA_QDTDNMCGOOqkPUeGgMnIheUvO6jMcZE5VRJNUJHKb33OCdSH6IRcCEUAz5GbPHms9g1PuvqLNoqdOtonY9ZWNllaJdZaLMnGz9Cm7o2q0LyNvljdFDbJvmTYU_Q8-xmMb3L54-399Pree4Y0HWuiWSWcagU1uCstoBr6ZXVigNYRVXJnSRcScpAYqW4IJQLRqtSU8p4SSfoYtv7GbuvjU9rswrJ-aaxre82yQhJFaGE9ODVFnSxSyn62nzG_oH4YwCbP2cGg3l5mJudM_PvzMhZHz4drmzKla920UFSD5wPgE3ONnW0rQtpxwnBpOaC_gJ2MXLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67382322</pqid></control><display><type>article</type><title>The role of radiotracer imaging in Parkinson disease</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>RAVINA, B ; EIDELBERG, D ; GWINN-HARDY, K ; MCFARLAND, H ; INNIS, R ; KATZ, R. G ; KIEBURTZ, K ; KISH, S. J ; LANGE, N ; LANGSTON, J. W ; MAREK, K ; MORIN, L ; AHLSKOG, J. E ; MOY, C ; MURPHY, D ; OERTEL, W. H ; OLIVER, G ; PALESCH, Y ; POWERS, W ; SEIBYL, J ; SETHI, K. D ; SHULTS, C. W ; SHEEHY, P ; ALBIN, R. L ; STOESSL, A. J ; HOLLOWAY, R ; BROOKS, D. J ; CARBON, M ; DHAWAN, V ; FEIGIN, A ; FAHN, S ; GUTTMAN, M</creator><creatorcontrib>RAVINA, B ; EIDELBERG, D ; GWINN-HARDY, K ; MCFARLAND, H ; INNIS, R ; KATZ, R. G ; KIEBURTZ, K ; KISH, S. J ; LANGE, N ; LANGSTON, J. W ; MAREK, K ; MORIN, L ; AHLSKOG, J. E ; MOY, C ; MURPHY, D ; OERTEL, W. H ; OLIVER, G ; PALESCH, Y ; POWERS, W ; SEIBYL, J ; SETHI, K. D ; SHULTS, C. W ; SHEEHY, P ; ALBIN, R. L ; STOESSL, A. J ; HOLLOWAY, R ; BROOKS, D. J ; CARBON, M ; DHAWAN, V ; FEIGIN, A ; FAHN, S ; GUTTMAN, M</creatorcontrib><description>Radiotracer imaging (RTI) of the nigrostriatal dopaminergic system is a widely used but controversial biomarker in Parkinson disease (PD). Here the authors review the concepts of biomarker development and the evidence to support the use of four radiotracers as biomarkers in PD: [18F]fluorodopa PET, (+)-[11C]dihydrotetrabenazine PET, [123I]beta-CIT SPECT, and [18F]fluorodeoxyglucose PET. Biomarkers used to study disease biology and facilitate drug discovery and early human trials rely on evidence that they are measuring relevant biologic processes. The four tracers fulfill this criterion, although they do not measure the number or density of dopaminergic neurons. Biomarkers used as diagnostic tests, prognostic tools, or surrogate endpoints must not only have biologic relevance but also a strong linkage to the clinical outcome of interest. No radiotracers fulfill these criteria, and current evidence does not support the use of imaging as a diagnostic tool in clinical practice or as a surrogate endpoint in clinical trials. Mechanistic information added by RTI to clinical trials may be difficult to interpret because of uncertainty about the interaction between the interventions and the tracer.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/01.wnl.0000149403.14458.7f</identifier><identifier>PMID: 15668415</identifier><identifier>CODEN: NEURAI</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Biological and medical sciences ; Biomarkers ; Biotransformation ; Blood-Brain Barrier ; Carbon Radioisotopes - pharmacokinetics ; Clinical Trials as Topic - methods ; Cocaine - analogs &amp; derivatives ; Cocaine - pharmacokinetics ; Corpus Striatum - diagnostic imaging ; Corpus Striatum - metabolism ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dihydroxyphenylalanine - analogs &amp; derivatives ; Dihydroxyphenylalanine - pharmacokinetics ; Dopamine - metabolism ; Fluorine Radioisotopes - pharmacokinetics ; Fluorodeoxyglucose F18 - pharmacokinetics ; Forecasting ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Iodine Radioisotopes - pharmacokinetics ; Medical sciences ; Nervous system ; Neurology ; Neurons - chemistry ; Neurons - diagnostic imaging ; Parkinson Disease - diagnosis ; Parkinson Disease - diagnostic imaging ; Parkinson Disease - therapy ; Positron-Emission Tomography ; Prognosis ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiopharmaceuticals - pharmacokinetics ; Receptors, Dopamine - metabolism ; Substantia Nigra - diagnostic imaging ; Substantia Nigra - metabolism ; Tetrabenazine - analogs &amp; derivatives ; Tetrabenazine - pharmacokinetics ; Tomography, Emission-Computed, Single-Photon</subject><ispartof>Neurology, 2005-01, Vol.64 (2), p.208-215</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9274a451d8091ca9a10f7e8a98511a838b5c72587341708856235643db93345b3</citedby><cites>FETCH-LOGICAL-c413t-9274a451d8091ca9a10f7e8a98511a838b5c72587341708856235643db93345b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16647956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15668415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RAVINA, B</creatorcontrib><creatorcontrib>EIDELBERG, D</creatorcontrib><creatorcontrib>GWINN-HARDY, K</creatorcontrib><creatorcontrib>MCFARLAND, H</creatorcontrib><creatorcontrib>INNIS, R</creatorcontrib><creatorcontrib>KATZ, R. G</creatorcontrib><creatorcontrib>KIEBURTZ, K</creatorcontrib><creatorcontrib>KISH, S. J</creatorcontrib><creatorcontrib>LANGE, N</creatorcontrib><creatorcontrib>LANGSTON, J. W</creatorcontrib><creatorcontrib>MAREK, K</creatorcontrib><creatorcontrib>MORIN, L</creatorcontrib><creatorcontrib>AHLSKOG, J. E</creatorcontrib><creatorcontrib>MOY, C</creatorcontrib><creatorcontrib>MURPHY, D</creatorcontrib><creatorcontrib>OERTEL, W. H</creatorcontrib><creatorcontrib>OLIVER, G</creatorcontrib><creatorcontrib>PALESCH, Y</creatorcontrib><creatorcontrib>POWERS, W</creatorcontrib><creatorcontrib>SEIBYL, J</creatorcontrib><creatorcontrib>SETHI, K. D</creatorcontrib><creatorcontrib>SHULTS, C. W</creatorcontrib><creatorcontrib>SHEEHY, P</creatorcontrib><creatorcontrib>ALBIN, R. L</creatorcontrib><creatorcontrib>STOESSL, A. J</creatorcontrib><creatorcontrib>HOLLOWAY, R</creatorcontrib><creatorcontrib>BROOKS, D. J</creatorcontrib><creatorcontrib>CARBON, M</creatorcontrib><creatorcontrib>DHAWAN, V</creatorcontrib><creatorcontrib>FEIGIN, A</creatorcontrib><creatorcontrib>FAHN, S</creatorcontrib><creatorcontrib>GUTTMAN, M</creatorcontrib><title>The role of radiotracer imaging in Parkinson disease</title><title>Neurology</title><addtitle>Neurology</addtitle><description>Radiotracer imaging (RTI) of the nigrostriatal dopaminergic system is a widely used but controversial biomarker in Parkinson disease (PD). Here the authors review the concepts of biomarker development and the evidence to support the use of four radiotracers as biomarkers in PD: [18F]fluorodopa PET, (+)-[11C]dihydrotetrabenazine PET, [123I]beta-CIT SPECT, and [18F]fluorodeoxyglucose PET. Biomarkers used to study disease biology and facilitate drug discovery and early human trials rely on evidence that they are measuring relevant biologic processes. The four tracers fulfill this criterion, although they do not measure the number or density of dopaminergic neurons. Biomarkers used as diagnostic tests, prognostic tools, or surrogate endpoints must not only have biologic relevance but also a strong linkage to the clinical outcome of interest. No radiotracers fulfill these criteria, and current evidence does not support the use of imaging as a diagnostic tool in clinical practice or as a surrogate endpoint in clinical trials. Mechanistic information added by RTI to clinical trials may be difficult to interpret because of uncertainty about the interaction between the interventions and the tracer.</description><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Biotransformation</subject><subject>Blood-Brain Barrier</subject><subject>Carbon Radioisotopes - pharmacokinetics</subject><subject>Clinical Trials as Topic - methods</subject><subject>Cocaine - analogs &amp; derivatives</subject><subject>Cocaine - pharmacokinetics</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Corpus Striatum - metabolism</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dihydroxyphenylalanine - analogs &amp; derivatives</subject><subject>Dihydroxyphenylalanine - pharmacokinetics</subject><subject>Dopamine - metabolism</subject><subject>Fluorine Radioisotopes - pharmacokinetics</subject><subject>Fluorodeoxyglucose F18 - pharmacokinetics</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Iodine Radioisotopes - pharmacokinetics</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neurons - chemistry</subject><subject>Neurons - diagnostic imaging</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson Disease - therapy</subject><subject>Positron-Emission Tomography</subject><subject>Prognosis</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>Receptors, Dopamine - metabolism</subject><subject>Substantia Nigra - diagnostic imaging</subject><subject>Substantia Nigra - metabolism</subject><subject>Tetrabenazine - analogs &amp; derivatives</subject><subject>Tetrabenazine - pharmacokinetics</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQhhdRbK3-BQmC3hJ39nu9SbEqFPVQ0duy2Wzqaprobov474020LnM5XnfYR6EzgAXQIBcYii-26bA_QDTDNMCGOOqkPUeGgMnIheUvO6jMcZE5VRJNUJHKb33OCdSH6IRcCEUAz5GbPHms9g1PuvqLNoqdOtonY9ZWNllaJdZaLMnGz9Cm7o2q0LyNvljdFDbJvmTYU_Q8-xmMb3L54-399Pree4Y0HWuiWSWcagU1uCstoBr6ZXVigNYRVXJnSRcScpAYqW4IJQLRqtSU8p4SSfoYtv7GbuvjU9rswrJ-aaxre82yQhJFaGE9ODVFnSxSyn62nzG_oH4YwCbP2cGg3l5mJudM_PvzMhZHz4drmzKla920UFSD5wPgE3ONnW0rQtpxwnBpOaC_gJ2MXLA</recordid><startdate>20050125</startdate><enddate>20050125</enddate><creator>RAVINA, B</creator><creator>EIDELBERG, D</creator><creator>GWINN-HARDY, K</creator><creator>MCFARLAND, H</creator><creator>INNIS, R</creator><creator>KATZ, R. G</creator><creator>KIEBURTZ, K</creator><creator>KISH, S. J</creator><creator>LANGE, N</creator><creator>LANGSTON, J. W</creator><creator>MAREK, K</creator><creator>MORIN, L</creator><creator>AHLSKOG, J. E</creator><creator>MOY, C</creator><creator>MURPHY, D</creator><creator>OERTEL, W. H</creator><creator>OLIVER, G</creator><creator>PALESCH, Y</creator><creator>POWERS, W</creator><creator>SEIBYL, J</creator><creator>SETHI, K. D</creator><creator>SHULTS, C. W</creator><creator>SHEEHY, P</creator><creator>ALBIN, R. L</creator><creator>STOESSL, A. J</creator><creator>HOLLOWAY, R</creator><creator>BROOKS, D. J</creator><creator>CARBON, M</creator><creator>DHAWAN, V</creator><creator>FEIGIN, A</creator><creator>FAHN, S</creator><creator>GUTTMAN, M</creator><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050125</creationdate><title>The role of radiotracer imaging in Parkinson disease</title><author>RAVINA, B ; EIDELBERG, D ; GWINN-HARDY, K ; MCFARLAND, H ; INNIS, R ; KATZ, R. G ; KIEBURTZ, K ; KISH, S. J ; LANGE, N ; LANGSTON, J. W ; MAREK, K ; MORIN, L ; AHLSKOG, J. E ; MOY, C ; MURPHY, D ; OERTEL, W. H ; OLIVER, G ; PALESCH, Y ; POWERS, W ; SEIBYL, J ; SETHI, K. D ; SHULTS, C. W ; SHEEHY, P ; ALBIN, R. L ; STOESSL, A. J ; HOLLOWAY, R ; BROOKS, D. J ; CARBON, M ; DHAWAN, V ; FEIGIN, A ; FAHN, S ; GUTTMAN, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9274a451d8091ca9a10f7e8a98511a838b5c72587341708856235643db93345b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Biotransformation</topic><topic>Blood-Brain Barrier</topic><topic>Carbon Radioisotopes - pharmacokinetics</topic><topic>Clinical Trials as Topic - methods</topic><topic>Cocaine - analogs &amp; derivatives</topic><topic>Cocaine - pharmacokinetics</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Corpus Striatum - metabolism</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dihydroxyphenylalanine - analogs &amp; derivatives</topic><topic>Dihydroxyphenylalanine - pharmacokinetics</topic><topic>Dopamine - metabolism</topic><topic>Fluorine Radioisotopes - pharmacokinetics</topic><topic>Fluorodeoxyglucose F18 - pharmacokinetics</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Iodine Radioisotopes - pharmacokinetics</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neurons - chemistry</topic><topic>Neurons - diagnostic imaging</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson Disease - therapy</topic><topic>Positron-Emission Tomography</topic><topic>Prognosis</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>Receptors, Dopamine - metabolism</topic><topic>Substantia Nigra - diagnostic imaging</topic><topic>Substantia Nigra - metabolism</topic><topic>Tetrabenazine - analogs &amp; derivatives</topic><topic>Tetrabenazine - pharmacokinetics</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAVINA, B</creatorcontrib><creatorcontrib>EIDELBERG, D</creatorcontrib><creatorcontrib>GWINN-HARDY, K</creatorcontrib><creatorcontrib>MCFARLAND, H</creatorcontrib><creatorcontrib>INNIS, R</creatorcontrib><creatorcontrib>KATZ, R. G</creatorcontrib><creatorcontrib>KIEBURTZ, K</creatorcontrib><creatorcontrib>KISH, S. J</creatorcontrib><creatorcontrib>LANGE, N</creatorcontrib><creatorcontrib>LANGSTON, J. W</creatorcontrib><creatorcontrib>MAREK, K</creatorcontrib><creatorcontrib>MORIN, L</creatorcontrib><creatorcontrib>AHLSKOG, J. E</creatorcontrib><creatorcontrib>MOY, C</creatorcontrib><creatorcontrib>MURPHY, D</creatorcontrib><creatorcontrib>OERTEL, W. H</creatorcontrib><creatorcontrib>OLIVER, G</creatorcontrib><creatorcontrib>PALESCH, Y</creatorcontrib><creatorcontrib>POWERS, W</creatorcontrib><creatorcontrib>SEIBYL, J</creatorcontrib><creatorcontrib>SETHI, K. D</creatorcontrib><creatorcontrib>SHULTS, C. W</creatorcontrib><creatorcontrib>SHEEHY, P</creatorcontrib><creatorcontrib>ALBIN, R. L</creatorcontrib><creatorcontrib>STOESSL, A. J</creatorcontrib><creatorcontrib>HOLLOWAY, R</creatorcontrib><creatorcontrib>BROOKS, D. J</creatorcontrib><creatorcontrib>CARBON, M</creatorcontrib><creatorcontrib>DHAWAN, V</creatorcontrib><creatorcontrib>FEIGIN, A</creatorcontrib><creatorcontrib>FAHN, S</creatorcontrib><creatorcontrib>GUTTMAN, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAVINA, B</au><au>EIDELBERG, D</au><au>GWINN-HARDY, K</au><au>MCFARLAND, H</au><au>INNIS, R</au><au>KATZ, R. G</au><au>KIEBURTZ, K</au><au>KISH, S. J</au><au>LANGE, N</au><au>LANGSTON, J. W</au><au>MAREK, K</au><au>MORIN, L</au><au>AHLSKOG, J. E</au><au>MOY, C</au><au>MURPHY, D</au><au>OERTEL, W. H</au><au>OLIVER, G</au><au>PALESCH, Y</au><au>POWERS, W</au><au>SEIBYL, J</au><au>SETHI, K. D</au><au>SHULTS, C. W</au><au>SHEEHY, P</au><au>ALBIN, R. L</au><au>STOESSL, A. J</au><au>HOLLOWAY, R</au><au>BROOKS, D. J</au><au>CARBON, M</au><au>DHAWAN, V</au><au>FEIGIN, A</au><au>FAHN, S</au><au>GUTTMAN, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of radiotracer imaging in Parkinson disease</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2005-01-25</date><risdate>2005</risdate><volume>64</volume><issue>2</issue><spage>208</spage><epage>215</epage><pages>208-215</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><coden>NEURAI</coden><abstract>Radiotracer imaging (RTI) of the nigrostriatal dopaminergic system is a widely used but controversial biomarker in Parkinson disease (PD). Here the authors review the concepts of biomarker development and the evidence to support the use of four radiotracers as biomarkers in PD: [18F]fluorodopa PET, (+)-[11C]dihydrotetrabenazine PET, [123I]beta-CIT SPECT, and [18F]fluorodeoxyglucose PET. Biomarkers used to study disease biology and facilitate drug discovery and early human trials rely on evidence that they are measuring relevant biologic processes. The four tracers fulfill this criterion, although they do not measure the number or density of dopaminergic neurons. Biomarkers used as diagnostic tests, prognostic tools, or surrogate endpoints must not only have biologic relevance but also a strong linkage to the clinical outcome of interest. No radiotracers fulfill these criteria, and current evidence does not support the use of imaging as a diagnostic tool in clinical practice or as a surrogate endpoint in clinical trials. Mechanistic information added by RTI to clinical trials may be difficult to interpret because of uncertainty about the interaction between the interventions and the tracer.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>15668415</pmid><doi>10.1212/01.wnl.0000149403.14458.7f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3878
ispartof Neurology, 2005-01, Vol.64 (2), p.208-215
issn 0028-3878
1526-632X
language eng
recordid cdi_proquest_miscellaneous_67382322
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Biological and medical sciences
Biomarkers
Biotransformation
Blood-Brain Barrier
Carbon Radioisotopes - pharmacokinetics
Clinical Trials as Topic - methods
Cocaine - analogs & derivatives
Cocaine - pharmacokinetics
Corpus Striatum - diagnostic imaging
Corpus Striatum - metabolism
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dihydroxyphenylalanine - analogs & derivatives
Dihydroxyphenylalanine - pharmacokinetics
Dopamine - metabolism
Fluorine Radioisotopes - pharmacokinetics
Fluorodeoxyglucose F18 - pharmacokinetics
Forecasting
Humans
Investigative techniques, diagnostic techniques (general aspects)
Iodine Radioisotopes - pharmacokinetics
Medical sciences
Nervous system
Neurology
Neurons - chemistry
Neurons - diagnostic imaging
Parkinson Disease - diagnosis
Parkinson Disease - diagnostic imaging
Parkinson Disease - therapy
Positron-Emission Tomography
Prognosis
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiopharmaceuticals - pharmacokinetics
Receptors, Dopamine - metabolism
Substantia Nigra - diagnostic imaging
Substantia Nigra - metabolism
Tetrabenazine - analogs & derivatives
Tetrabenazine - pharmacokinetics
Tomography, Emission-Computed, Single-Photon
title The role of radiotracer imaging in Parkinson disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20radiotracer%20imaging%20in%20Parkinson%20disease&rft.jtitle=Neurology&rft.au=RAVINA,%20B&rft.date=2005-01-25&rft.volume=64&rft.issue=2&rft.spage=208&rft.epage=215&rft.pages=208-215&rft.issn=0028-3878&rft.eissn=1526-632X&rft.coden=NEURAI&rft_id=info:doi/10.1212/01.wnl.0000149403.14458.7f&rft_dat=%3Cproquest_cross%3E67382322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67382322&rft_id=info:pmid/15668415&rfr_iscdi=true