A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site

HIV‐1 protease is most active under weakly acidic conditions (pH 3.5–6.5), when the catalytic Asp25 and Asp25′ residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV‐1 prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2005-02, Vol.58 (2), p.450-458
Hauptverfasser: Kovalskyy, Dmytro, Dubyna, Volodymyr, Mark, Alan E., Kornelyuk, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 450
container_title Proteins, structure, function, and bioinformatics
container_volume 58
creator Kovalskyy, Dmytro
Dubyna, Volodymyr
Mark, Alan E.
Kornelyuk, Alexander
description HIV‐1 protease is most active under weakly acidic conditions (pH 3.5–6.5), when the catalytic Asp25 and Asp25′ residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV‐1 protease using MD simulation techniques. MD simulations of the solvated HIV‐1 protease with the Asp25/25′ residues monoprotonated and deprotonated have been performed. In addition we investigated the effect of the inclusion of Na+ and Cl− ions to mimic physiological salt conditions. The simulations of the monoprotonated form and deprotonated form including Na+ show very similar behavior. In both cases the protein remained stable in the compact, “self‐blocked” conformation in which the active site is blocked by the tips of the flaps. In the deprotonated system a Na+ ion binds tightly to the catalytic dyad shielding the repulsion between the COO− groups. Ab initio calculations also suggest the geometry of the active site with the Na+ bound closely resembles that of the monoprotonated case. In the simulations of the deprotonated form (without Na+ ions), a water molecule bound between the Asp25 Asp25′ side‐chains. This disrupted the dimerization interface and eventually led to a fully open conformation. Proteins 2005. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.20304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67352805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67352805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4014-37bdd1229eadcd414774635c33ec09a732080e84df1a41db18bf06b9b38142cf3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokNhwwMgr1iAUo5jOxd21QjaStWUS7jsLMd2WkMSD7YDhGfhYXFmprBjZfv4-__fPgehxwROCED-YutdPMmBAruDVgTqMgNC2V20gqoqM8orfoQehPAFAIqaFvfREeG8yDmpV-j3KR5cb9TUS4_1PMrBqoBDnPSMXYfjjUkHP6k4edmnrWxtb-Pu7vziY0bwEm5kMHgatfF4ezMH63p3bVXilRu1jdaN4SVukpVPUYt0I5_jpYrteOv5y47Xuzipov2eUm00D9G9TvbBPDqsx-jD61fN-jy7vDq7WJ9eZooBYRktW61JntdGaqUZYWXJCsoVpUZBLUuaQwWmYrojkhHdkqrtoGjrllaE5aqjx-jp3jd95ttkQhSDDcr0vRyNm4IoSsrzCngCn-1B5V0I3nRi6-0g_SwIiGUWYmmH2M0iwU8OrlM7GP0PPTQ_AWQP_LC9mf9jJd68u2puTbO9xoZofv7VSP91eWXJxafNmdiw5n2z_szEW_oHV2qmLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67352805</pqid></control><display><type>article</type><title>A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kovalskyy, Dmytro ; Dubyna, Volodymyr ; Mark, Alan E. ; Kornelyuk, Alexander</creator><creatorcontrib>Kovalskyy, Dmytro ; Dubyna, Volodymyr ; Mark, Alan E. ; Kornelyuk, Alexander</creatorcontrib><description>HIV‐1 protease is most active under weakly acidic conditions (pH 3.5–6.5), when the catalytic Asp25 and Asp25′ residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV‐1 protease using MD simulation techniques. MD simulations of the solvated HIV‐1 protease with the Asp25/25′ residues monoprotonated and deprotonated have been performed. In addition we investigated the effect of the inclusion of Na+ and Cl− ions to mimic physiological salt conditions. The simulations of the monoprotonated form and deprotonated form including Na+ show very similar behavior. In both cases the protein remained stable in the compact, “self‐blocked” conformation in which the active site is blocked by the tips of the flaps. In the deprotonated system a Na+ ion binds tightly to the catalytic dyad shielding the repulsion between the COO− groups. Ab initio calculations also suggest the geometry of the active site with the Na+ bound closely resembles that of the monoprotonated case. In the simulations of the deprotonated form (without Na+ ions), a water molecule bound between the Asp25 Asp25′ side‐chains. This disrupted the dimerization interface and eventually led to a fully open conformation. Proteins 2005. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.20304</identifier><identifier>PMID: 15562519</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ab initio optimization ; acidic and neutral pH ; Aspartic Acid - chemistry ; Binding Sites ; Biophysical Phenomena ; Biophysics ; Catalysis ; Computational Biology ; Computer Simulation ; Databases, Protein ; Dimerization ; HIV Protease - chemistry ; HIV-1 protease ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ions - chemistry ; Models, Molecular ; Models, Statistical ; Molecular Conformation ; molecular dynamics ; positive ions ; Protein Structure, Secondary ; Proteomics - methods ; Sodium - chemistry ; Software ; stabilizing factor</subject><ispartof>Proteins, structure, function, and bioinformatics, 2005-02, Vol.58 (2), p.450-458</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>(c) 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4014-37bdd1229eadcd414774635c33ec09a732080e84df1a41db18bf06b9b38142cf3</citedby><cites>FETCH-LOGICAL-c4014-37bdd1229eadcd414774635c33ec09a732080e84df1a41db18bf06b9b38142cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.20304$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.20304$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15562519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovalskyy, Dmytro</creatorcontrib><creatorcontrib>Dubyna, Volodymyr</creatorcontrib><creatorcontrib>Mark, Alan E.</creatorcontrib><creatorcontrib>Kornelyuk, Alexander</creatorcontrib><title>A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>HIV‐1 protease is most active under weakly acidic conditions (pH 3.5–6.5), when the catalytic Asp25 and Asp25′ residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV‐1 protease using MD simulation techniques. MD simulations of the solvated HIV‐1 protease with the Asp25/25′ residues monoprotonated and deprotonated have been performed. In addition we investigated the effect of the inclusion of Na+ and Cl− ions to mimic physiological salt conditions. The simulations of the monoprotonated form and deprotonated form including Na+ show very similar behavior. In both cases the protein remained stable in the compact, “self‐blocked” conformation in which the active site is blocked by the tips of the flaps. In the deprotonated system a Na+ ion binds tightly to the catalytic dyad shielding the repulsion between the COO− groups. Ab initio calculations also suggest the geometry of the active site with the Na+ bound closely resembles that of the monoprotonated case. In the simulations of the deprotonated form (without Na+ ions), a water molecule bound between the Asp25 Asp25′ side‐chains. This disrupted the dimerization interface and eventually led to a fully open conformation. Proteins 2005. © 2004 Wiley‐Liss, Inc.</description><subject>ab initio optimization</subject><subject>acidic and neutral pH</subject><subject>Aspartic Acid - chemistry</subject><subject>Binding Sites</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Catalysis</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Databases, Protein</subject><subject>Dimerization</subject><subject>HIV Protease - chemistry</subject><subject>HIV-1 protease</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ions - chemistry</subject><subject>Models, Molecular</subject><subject>Models, Statistical</subject><subject>Molecular Conformation</subject><subject>molecular dynamics</subject><subject>positive ions</subject><subject>Protein Structure, Secondary</subject><subject>Proteomics - methods</subject><subject>Sodium - chemistry</subject><subject>Software</subject><subject>stabilizing factor</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokNhwwMgr1iAUo5jOxd21QjaStWUS7jsLMd2WkMSD7YDhGfhYXFmprBjZfv4-__fPgehxwROCED-YutdPMmBAruDVgTqMgNC2V20gqoqM8orfoQehPAFAIqaFvfREeG8yDmpV-j3KR5cb9TUS4_1PMrBqoBDnPSMXYfjjUkHP6k4edmnrWxtb-Pu7vziY0bwEm5kMHgatfF4ezMH63p3bVXilRu1jdaN4SVukpVPUYt0I5_jpYrteOv5y47Xuzipov2eUm00D9G9TvbBPDqsx-jD61fN-jy7vDq7WJ9eZooBYRktW61JntdGaqUZYWXJCsoVpUZBLUuaQwWmYrojkhHdkqrtoGjrllaE5aqjx-jp3jd95ttkQhSDDcr0vRyNm4IoSsrzCngCn-1B5V0I3nRi6-0g_SwIiGUWYmmH2M0iwU8OrlM7GP0PPTQ_AWQP_LC9mf9jJd68u2puTbO9xoZofv7VSP91eWXJxafNmdiw5n2z_szEW_oHV2qmLg</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Kovalskyy, Dmytro</creator><creator>Dubyna, Volodymyr</creator><creator>Mark, Alan E.</creator><creator>Kornelyuk, Alexander</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050201</creationdate><title>A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site</title><author>Kovalskyy, Dmytro ; Dubyna, Volodymyr ; Mark, Alan E. ; Kornelyuk, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4014-37bdd1229eadcd414774635c33ec09a732080e84df1a41db18bf06b9b38142cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ab initio optimization</topic><topic>acidic and neutral pH</topic><topic>Aspartic Acid - chemistry</topic><topic>Binding Sites</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Catalysis</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Databases, Protein</topic><topic>Dimerization</topic><topic>HIV Protease - chemistry</topic><topic>HIV-1 protease</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ions - chemistry</topic><topic>Models, Molecular</topic><topic>Models, Statistical</topic><topic>Molecular Conformation</topic><topic>molecular dynamics</topic><topic>positive ions</topic><topic>Protein Structure, Secondary</topic><topic>Proteomics - methods</topic><topic>Sodium - chemistry</topic><topic>Software</topic><topic>stabilizing factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalskyy, Dmytro</creatorcontrib><creatorcontrib>Dubyna, Volodymyr</creatorcontrib><creatorcontrib>Mark, Alan E.</creatorcontrib><creatorcontrib>Kornelyuk, Alexander</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalskyy, Dmytro</au><au>Dubyna, Volodymyr</au><au>Mark, Alan E.</au><au>Kornelyuk, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>58</volume><issue>2</issue><spage>450</spage><epage>458</epage><pages>450-458</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>HIV‐1 protease is most active under weakly acidic conditions (pH 3.5–6.5), when the catalytic Asp25 and Asp25′ residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV‐1 protease using MD simulation techniques. MD simulations of the solvated HIV‐1 protease with the Asp25/25′ residues monoprotonated and deprotonated have been performed. In addition we investigated the effect of the inclusion of Na+ and Cl− ions to mimic physiological salt conditions. The simulations of the monoprotonated form and deprotonated form including Na+ show very similar behavior. In both cases the protein remained stable in the compact, “self‐blocked” conformation in which the active site is blocked by the tips of the flaps. In the deprotonated system a Na+ ion binds tightly to the catalytic dyad shielding the repulsion between the COO− groups. Ab initio calculations also suggest the geometry of the active site with the Na+ bound closely resembles that of the monoprotonated case. In the simulations of the deprotonated form (without Na+ ions), a water molecule bound between the Asp25 Asp25′ side‐chains. This disrupted the dimerization interface and eventually led to a fully open conformation. Proteins 2005. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15562519</pmid><doi>10.1002/prot.20304</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2005-02, Vol.58 (2), p.450-458
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_67352805
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects ab initio optimization
acidic and neutral pH
Aspartic Acid - chemistry
Binding Sites
Biophysical Phenomena
Biophysics
Catalysis
Computational Biology
Computer Simulation
Databases, Protein
Dimerization
HIV Protease - chemistry
HIV-1 protease
Hydrogen Bonding
Hydrogen-Ion Concentration
Ions - chemistry
Models, Molecular
Models, Statistical
Molecular Conformation
molecular dynamics
positive ions
Protein Structure, Secondary
Proteomics - methods
Sodium - chemistry
Software
stabilizing factor
title A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: The role of Na+ ions in stabilizing the active site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20dynamics%20study%20of%20the%20structural%20stability%20of%20HIV-1%20protease%20under%20physiological%20conditions:%20The%20role%20of%20Na+%20ions%20in%20stabilizing%20the%20active%20site&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Kovalskyy,%20Dmytro&rft.date=2005-02-01&rft.volume=58&rft.issue=2&rft.spage=450&rft.epage=458&rft.pages=450-458&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.20304&rft_dat=%3Cproquest_cross%3E67352805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67352805&rft_id=info:pmid/15562519&rfr_iscdi=true