Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium

Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water‐flooded high‐permeability zone into the oil‐bearing low‐permeability zone. During field use, exopolymer‐producing bacteria plug the high‐permeability zone only in the immediate vicinity of the injecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2005-01, Vol.89 (1), p.96-101
Hauptverfasser: Wolf, Barry F., Scott Fogler, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 96
container_title Biotechnology and bioengineering
container_volume 89
creator Wolf, Barry F.
Scott Fogler, H.
description Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water‐flooded high‐permeability zone into the oil‐bearing low‐permeability zone. During field use, exopolymer‐producing bacteria plug the high‐permeability zone only in the immediate vicinity of the injection point (the near‐well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL‐B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 ± 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH. © 2004 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20315
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67350300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>779166651</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4125-db855820b0a4f5dd0627071de3b0d2335e4312dc54fd838bcd0bc4f7bf67aa7e3</originalsourceid><addsrcrecordid>eNqFkl1LHDEUhkNpqav2on-ghEK9Gz1JJsls77pSV2FRsBYvQ75Go7PJOpnBetW_3qy7VuhNIZAT8rzvyTk5CH0kcEgA6JEJwyEFRvgbNCEwlRXQKbxFEwAQFeNTuoN2c74rR9kI8R7tEM5roAAT9Hvep8fhFqcWL_xoU0x5SBYvffZx8H0Kzmd8fnm5qGacMhwi1mV197oL0RfMhXH5Ff8YTVoNYak7vDrFNxvLEG9DeVlIce2ucaftECzWNjhsSuz7ot1H71rdZf9hu--hnyffr45Pq8XF_Oz426K6qQnllTMN5w0FA7puuXMgqARJnGcGHGWM-5oR6iyvW9ewxlgHxtatNK2QWkvP9tDBxnfVp4fR50EtQ7a-63T0acxKSMaBAfwXJFIywQkr4Od_wLs09rEUoShhUghG126fttBoSrPUqi9N6p_UywcU4MsW0Nnqru11tCG_ciWVlKQu3NGGewydf3q9B7WeAFX6rJ4nQM3Orp6Doqg2ipAH_-uvQvf362IlV9fnczWfsZPiXqsp-wOUR7BH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213766320</pqid></control><display><type>article</type><title>Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wolf, Barry F. ; Scott Fogler, H.</creator><creatorcontrib>Wolf, Barry F. ; Scott Fogler, H.</creatorcontrib><description>Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water‐flooded high‐permeability zone into the oil‐bearing low‐permeability zone. During field use, exopolymer‐producing bacteria plug the high‐permeability zone only in the immediate vicinity of the injection point (the near‐well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL‐B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 ± 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20315</identifier><identifier>PMID: 15540200</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acids ; Alkalinity ; Bacteria ; bacterial kinetics ; bacterial profile modification ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Cell Culture Techniques ; Cell Division ; Fundamental and applied biological sciences. Psychology ; growth inhibition ; Hydrogen-Ion Concentration ; L. mesenteroides ; Lactobacillaceae - growth &amp; development ; Leuconostoc - growth &amp; development ; Leuconostoc mesenteroides ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Statistical ; suboptimal pH ; Time Factors</subject><ispartof>Biotechnology and bioengineering, 2005-01, Vol.89 (1), p.96-101</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>(c) 2004 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jan 5, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16517714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15540200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Barry F.</creatorcontrib><creatorcontrib>Scott Fogler, H.</creatorcontrib><title>Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water‐flooded high‐permeability zone into the oil‐bearing low‐permeability zone. During field use, exopolymer‐producing bacteria plug the high‐permeability zone only in the immediate vicinity of the injection point (the near‐well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL‐B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 ± 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH. © 2004 Wiley Periodicals, Inc.</description><subject>Acids</subject><subject>Alkalinity</subject><subject>Bacteria</subject><subject>bacterial kinetics</subject><subject>bacterial profile modification</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques</subject><subject>Cell Division</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>growth inhibition</subject><subject>Hydrogen-Ion Concentration</subject><subject>L. mesenteroides</subject><subject>Lactobacillaceae - growth &amp; development</subject><subject>Leuconostoc - growth &amp; development</subject><subject>Leuconostoc mesenteroides</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Statistical</subject><subject>suboptimal pH</subject><subject>Time Factors</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1LHDEUhkNpqav2on-ghEK9Gz1JJsls77pSV2FRsBYvQ75Go7PJOpnBetW_3qy7VuhNIZAT8rzvyTk5CH0kcEgA6JEJwyEFRvgbNCEwlRXQKbxFEwAQFeNTuoN2c74rR9kI8R7tEM5roAAT9Hvep8fhFqcWL_xoU0x5SBYvffZx8H0Kzmd8fnm5qGacMhwi1mV197oL0RfMhXH5Ff8YTVoNYak7vDrFNxvLEG9DeVlIce2ucaftECzWNjhsSuz7ot1H71rdZf9hu--hnyffr45Pq8XF_Oz426K6qQnllTMN5w0FA7puuXMgqARJnGcGHGWM-5oR6iyvW9ewxlgHxtatNK2QWkvP9tDBxnfVp4fR50EtQ7a-63T0acxKSMaBAfwXJFIywQkr4Od_wLs09rEUoShhUghG126fttBoSrPUqi9N6p_UywcU4MsW0Nnqru11tCG_ciWVlKQu3NGGewydf3q9B7WeAFX6rJ4nQM3Orp6Doqg2ipAH_-uvQvf362IlV9fnczWfsZPiXqsp-wOUR7BH</recordid><startdate>20050105</startdate><enddate>20050105</enddate><creator>Wolf, Barry F.</creator><creator>Scott Fogler, H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050105</creationdate><title>Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium</title><author>Wolf, Barry F. ; Scott Fogler, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4125-db855820b0a4f5dd0627071de3b0d2335e4312dc54fd838bcd0bc4f7bf67aa7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acids</topic><topic>Alkalinity</topic><topic>Bacteria</topic><topic>bacterial kinetics</topic><topic>bacterial profile modification</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques</topic><topic>Cell Division</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>growth inhibition</topic><topic>Hydrogen-Ion Concentration</topic><topic>L. mesenteroides</topic><topic>Lactobacillaceae - growth &amp; development</topic><topic>Leuconostoc - growth &amp; development</topic><topic>Leuconostoc mesenteroides</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Statistical</topic><topic>suboptimal pH</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Barry F.</creatorcontrib><creatorcontrib>Scott Fogler, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Barry F.</au><au>Scott Fogler, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2005-01-05</date><risdate>2005</risdate><volume>89</volume><issue>1</issue><spage>96</spage><epage>101</epage><pages>96-101</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water‐flooded high‐permeability zone into the oil‐bearing low‐permeability zone. During field use, exopolymer‐producing bacteria plug the high‐permeability zone only in the immediate vicinity of the injection point (the near‐well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL‐B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 ± 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15540200</pmid><doi>10.1002/bit.20315</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2005-01, Vol.89 (1), p.96-101
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_67350300
source MEDLINE; Wiley Online Library All Journals
subjects Acids
Alkalinity
Bacteria
bacterial kinetics
bacterial profile modification
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Cell Culture Techniques
Cell Division
Fundamental and applied biological sciences. Psychology
growth inhibition
Hydrogen-Ion Concentration
L. mesenteroides
Lactobacillaceae - growth & development
Leuconostoc - growth & development
Leuconostoc mesenteroides
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Models, Statistical
suboptimal pH
Time Factors
title Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: Suboptimal pH growth inhibition of a lactic acid bacterium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Leuconostoc%20mesenteroides%20NRRL-B523%20in%20an%20alkaline%20medium:%20Suboptimal%20pH%20growth%20inhibition%20of%20a%20lactic%20acid%20bacterium&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Wolf,%20Barry%20F.&rft.date=2005-01-05&rft.volume=89&rft.issue=1&rft.spage=96&rft.epage=101&rft.pages=96-101&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20315&rft_dat=%3Cproquest_pubme%3E779166651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213766320&rft_id=info:pmid/15540200&rfr_iscdi=true