Towards optimum permeability reduction in porous media using biofilm growth simulations

While biological clogging of porous systems can be problematic in numerous processes (e.g., microbial enhanced oil recovery--MEOR), it is targeted during bio-barrier formation to control sub-surface pollution plumes in ground water. In this simulation study, constant pressure drop (CPD) and constant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2009-07, Vol.103 (4), p.767-779
Hauptverfasser: Pintelon, T.R.R, Graf von der Schulenburg, D.A, Johns, M.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 4
container_start_page 767
container_title Biotechnology and bioengineering
container_volume 103
creator Pintelon, T.R.R
Graf von der Schulenburg, D.A
Johns, M.L
description While biological clogging of porous systems can be problematic in numerous processes (e.g., microbial enhanced oil recovery--MEOR), it is targeted during bio-barrier formation to control sub-surface pollution plumes in ground water. In this simulation study, constant pressure drop (CPD) and constant volumetric flow rate (CVF) operational modes for nutrient provision for biofilm growth in a porous system are considered with respect to optimum (minimum energy requirement for nutrient provision) permeability reduction for bio-barrier applications. Biofilm growth is simulated using a Lattice-Boltzmann (LB) simulation platform complemented with an individual-based biofilm model (IbM). A biomass detachment technique has been included using a fast marching level set (FMLS) method that models the propagation of the biofilm-liquid interface with a speed proportional to the adjacent velocity shear field. The porous medium permeability reduction is simulated for both operational modes using a range of biofilm strengths. For stronger biofilms, less biomass deposition and energy input are required to reduce the system permeability during CPD operation, whereas CVF is more efficient at reducing the permeability of systems containing weaker biofilms. Biotechnol. Bioeng. 2009;103: 767-779.
doi_str_mv 10.1002/bit.22303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67347403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1750740481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5043-31d8caf05f4e3f0cec7ea25934ec3bd8428e2a053a97e8218aa7cff8ebe6f0683</originalsourceid><addsrcrecordid>eNqF0VFr1TAUB_AiirtOH_wCGgQFH7qdJG3SPOrQbXCZgnfMt5CmyTWzbWrScr3f3tReJwiypxD4nXOS_8my5xhOMAA5rd14QggF-iBbYRA8ByLgYbYCAJbTUpCj7EmMt-nKK8YeZ0dY0MRKuspuNn6nQhORH0bXTR0aTOiMql3rxj0Kppn06HyPXI8GH_wUUWcap9AUXb9FtfPWtR3aBr8bv6GYOrRq9vFp9siqNppnh_M4u_74YXN2ka8_nV-evVvnuoSC5hQ3lVYWSlsYakEbzY0ipaCF0bRuqoJUhigoqRLcVARXSnFtbWVqwyywih5nb5a-Q_A_JhNH2bmoTduq3qTXSsZpwQug98LEUiQpmPsgAUIwL1mCr_6Bt34KffqtJJjyUhQwo7cL0sHHGIyVQ3CdCnuJQc7Lk2l58vfykn1xaDjVKeW_8rCtBF4fgIpatTaoXrt45whmnAPg5E4Xt3Ot2f9_onx_ufkzOl8qXBzNz7sKFb7PCfJS3lydy_VnAVf064WcQ3q5eKu8VNuQXnH9haTRgBkVjAj6C0dHyQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213759406</pqid></control><display><type>article</type><title>Towards optimum permeability reduction in porous media using biofilm growth simulations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pintelon, T.R.R ; Graf von der Schulenburg, D.A ; Johns, M.L</creator><creatorcontrib>Pintelon, T.R.R ; Graf von der Schulenburg, D.A ; Johns, M.L</creatorcontrib><description>While biological clogging of porous systems can be problematic in numerous processes (e.g., microbial enhanced oil recovery--MEOR), it is targeted during bio-barrier formation to control sub-surface pollution plumes in ground water. In this simulation study, constant pressure drop (CPD) and constant volumetric flow rate (CVF) operational modes for nutrient provision for biofilm growth in a porous system are considered with respect to optimum (minimum energy requirement for nutrient provision) permeability reduction for bio-barrier applications. Biofilm growth is simulated using a Lattice-Boltzmann (LB) simulation platform complemented with an individual-based biofilm model (IbM). A biomass detachment technique has been included using a fast marching level set (FMLS) method that models the propagation of the biofilm-liquid interface with a speed proportional to the adjacent velocity shear field. The porous medium permeability reduction is simulated for both operational modes using a range of biofilm strengths. For stronger biofilms, less biomass deposition and energy input are required to reduce the system permeability during CPD operation, whereas CVF is more efficient at reducing the permeability of systems containing weaker biofilms. Biotechnol. Bioeng. 2009;103: 767-779.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22303</identifier><identifier>PMID: 19309753</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biofilms ; Biofilms - growth &amp; development ; Biological and medical sciences ; Biomass ; Biotechnology ; Biotechnology - methods ; Fundamental and applied biological sciences. Psychology ; Groundwater ; Models, Theoretical ; Permeability ; Physical growth ; Porosity ; Porous materials ; Simulation</subject><ispartof>Biotechnology and bioengineering, 2009-07, Vol.103 (4), p.767-779</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2009 INIST-CNRS</rights><rights>(c) 2009 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5043-31d8caf05f4e3f0cec7ea25934ec3bd8428e2a053a97e8218aa7cff8ebe6f0683</citedby><cites>FETCH-LOGICAL-c5043-31d8caf05f4e3f0cec7ea25934ec3bd8428e2a053a97e8218aa7cff8ebe6f0683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.22303$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.22303$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21677001$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19309753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pintelon, T.R.R</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A</creatorcontrib><creatorcontrib>Johns, M.L</creatorcontrib><title>Towards optimum permeability reduction in porous media using biofilm growth simulations</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>While biological clogging of porous systems can be problematic in numerous processes (e.g., microbial enhanced oil recovery--MEOR), it is targeted during bio-barrier formation to control sub-surface pollution plumes in ground water. In this simulation study, constant pressure drop (CPD) and constant volumetric flow rate (CVF) operational modes for nutrient provision for biofilm growth in a porous system are considered with respect to optimum (minimum energy requirement for nutrient provision) permeability reduction for bio-barrier applications. Biofilm growth is simulated using a Lattice-Boltzmann (LB) simulation platform complemented with an individual-based biofilm model (IbM). A biomass detachment technique has been included using a fast marching level set (FMLS) method that models the propagation of the biofilm-liquid interface with a speed proportional to the adjacent velocity shear field. The porous medium permeability reduction is simulated for both operational modes using a range of biofilm strengths. For stronger biofilms, less biomass deposition and energy input are required to reduce the system permeability during CPD operation, whereas CVF is more efficient at reducing the permeability of systems containing weaker biofilms. Biotechnol. Bioeng. 2009;103: 767-779.</description><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Groundwater</subject><subject>Models, Theoretical</subject><subject>Permeability</subject><subject>Physical growth</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Simulation</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VFr1TAUB_AiirtOH_wCGgQFH7qdJG3SPOrQbXCZgnfMt5CmyTWzbWrScr3f3tReJwiypxD4nXOS_8my5xhOMAA5rd14QggF-iBbYRA8ByLgYbYCAJbTUpCj7EmMt-nKK8YeZ0dY0MRKuspuNn6nQhORH0bXTR0aTOiMql3rxj0Kppn06HyPXI8GH_wUUWcap9AUXb9FtfPWtR3aBr8bv6GYOrRq9vFp9siqNppnh_M4u_74YXN2ka8_nV-evVvnuoSC5hQ3lVYWSlsYakEbzY0ipaCF0bRuqoJUhigoqRLcVARXSnFtbWVqwyywih5nb5a-Q_A_JhNH2bmoTduq3qTXSsZpwQug98LEUiQpmPsgAUIwL1mCr_6Bt34KffqtJJjyUhQwo7cL0sHHGIyVQ3CdCnuJQc7Lk2l58vfykn1xaDjVKeW_8rCtBF4fgIpatTaoXrt45whmnAPg5E4Xt3Ot2f9_onx_ufkzOl8qXBzNz7sKFb7PCfJS3lydy_VnAVf064WcQ3q5eKu8VNuQXnH9haTRgBkVjAj6C0dHyQo</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Pintelon, T.R.R</creator><creator>Graf von der Schulenburg, D.A</creator><creator>Johns, M.L</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Towards optimum permeability reduction in porous media using biofilm growth simulations</title><author>Pintelon, T.R.R ; Graf von der Schulenburg, D.A ; Johns, M.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5043-31d8caf05f4e3f0cec7ea25934ec3bd8428e2a053a97e8218aa7cff8ebe6f0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Groundwater</topic><topic>Models, Theoretical</topic><topic>Permeability</topic><topic>Physical growth</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pintelon, T.R.R</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A</creatorcontrib><creatorcontrib>Johns, M.L</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pintelon, T.R.R</au><au>Graf von der Schulenburg, D.A</au><au>Johns, M.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards optimum permeability reduction in porous media using biofilm growth simulations</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>103</volume><issue>4</issue><spage>767</spage><epage>779</epage><pages>767-779</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>While biological clogging of porous systems can be problematic in numerous processes (e.g., microbial enhanced oil recovery--MEOR), it is targeted during bio-barrier formation to control sub-surface pollution plumes in ground water. In this simulation study, constant pressure drop (CPD) and constant volumetric flow rate (CVF) operational modes for nutrient provision for biofilm growth in a porous system are considered with respect to optimum (minimum energy requirement for nutrient provision) permeability reduction for bio-barrier applications. Biofilm growth is simulated using a Lattice-Boltzmann (LB) simulation platform complemented with an individual-based biofilm model (IbM). A biomass detachment technique has been included using a fast marching level set (FMLS) method that models the propagation of the biofilm-liquid interface with a speed proportional to the adjacent velocity shear field. The porous medium permeability reduction is simulated for both operational modes using a range of biofilm strengths. For stronger biofilms, less biomass deposition and energy input are required to reduce the system permeability during CPD operation, whereas CVF is more efficient at reducing the permeability of systems containing weaker biofilms. Biotechnol. Bioeng. 2009;103: 767-779.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19309753</pmid><doi>10.1002/bit.22303</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2009-07, Vol.103 (4), p.767-779
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_67347403
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biofilms
Biofilms - growth & development
Biological and medical sciences
Biomass
Biotechnology
Biotechnology - methods
Fundamental and applied biological sciences. Psychology
Groundwater
Models, Theoretical
Permeability
Physical growth
Porosity
Porous materials
Simulation
title Towards optimum permeability reduction in porous media using biofilm growth simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20optimum%20permeability%20reduction%20in%20porous%20media%20using%20biofilm%20growth%20simulations&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Pintelon,%20T.R.R&rft.date=2009-07-01&rft.volume=103&rft.issue=4&rft.spage=767&rft.epage=779&rft.pages=767-779&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22303&rft_dat=%3Cproquest_cross%3E1750740481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213759406&rft_id=info:pmid/19309753&rfr_iscdi=true