New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis)
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen a...
Gespeichert in:
Veröffentlicht in: | Cytogenetic and genome research 2005-01, Vol.108 (4), p.310-316 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 4 |
container_start_page | 310 |
container_title | Cytogenetic and genome research |
container_volume | 108 |
creator | Chi, J. Fu, B. Nie, W. Wang, J. Graphodatsky, A.S. Yang, F. |
description | To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6–10, 12–22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1–5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1–5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. |
doi_str_mv | 10.1159/000081520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67343040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17830763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-7d3ea7573d686af5a4b4c6f7fdf452a9a51a9cd25b26cf8538e8922088acd1833</originalsourceid><addsrcrecordid>eNqF0U2LEzEYB_AgiruuHjwLEjzIFqzmdSZz1KKrsCqIgrchzTzppJ1OZvPMrNQv4tc1a0sXRDCXPIcf_7z8CXnM2UvOdfWK5WW4FuwOOeVKqLnR1fe7x9nwE_IAcc0YN0oX98kJ14UoS81Oya9P8IOGHsOqHTEPY6RjC3Rj0y6OuyE4mqCzY4g9tmFAGj1dtKEHBLqd-nFtHT3_mIdg3YTZwjVgmL2gPibAMRvc0AYgZRXRtdksIcHPeI2bEGbU9g1d2Z3t6PmbiNSn2I-2Czh7SO552yE8Ouxn5Nu7t18X7-eXny8-LF5fzp00ZpyXjQRb6lI2hSms11YtlSt86RuvtLCV1dxWrhF6KQrnjZYGTCUEM8a6hhspz8jzfe6Q4tWUr1xvAzroOttDnLAuSqkkU-y_kJdGsrK4SXz2F1zHKfX5EbUQSnBuWJHRbI9ciogJfD2ksM2fXnNW33RaHzvN9ukhcFpuobmVhxJvT8ytrSAdweLiy5-Eemh8Rk_-ifZn_AZl0rGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224211806</pqid></control><display><type>article</type><title>New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis)</title><source>Karger Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Chi, J. ; Fu, B. ; Nie, W. ; Wang, J. ; Graphodatsky, A.S. ; Yang, F.</creator><creatorcontrib>Chi, J. ; Fu, B. ; Nie, W. ; Wang, J. ; Graphodatsky, A.S. ; Yang, F.</creatorcontrib><description>To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6–10, 12–22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1–5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1–5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. </description><identifier>ISSN: 1424-8581</identifier><identifier>EISSN: 1424-859X</identifier><identifier>DOI: 10.1159/000081520</identifier><identifier>PMID: 15627750</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animal Cytogenetics and Comparative Mapping ; Animals ; Bos frontalis ; Bovidae ; Cattle ; Cell Line ; Cervidae ; China ; Chromosome Banding - methods ; Chromosome Mapping - methods ; Chromosome Painting - methods ; Chromosomes, Mammalian - genetics ; Deer - genetics ; DNA Probes - genetics ; Fibroblasts - chemistry ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Karyotyping ; Muntiacus reevesi ; Muntjacs - genetics</subject><ispartof>Cytogenetic and genome research, 2005-01, Vol.108 (4), p.310-316</ispartof><rights>2005 S. Karger AG, Basel</rights><rights>Copyright 2005 S. Karger AG, Basel.</rights><rights>Copyright (c) 2005 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-7d3ea7573d686af5a4b4c6f7fdf452a9a51a9cd25b26cf8538e8922088acd1833</citedby><cites>FETCH-LOGICAL-c388t-7d3ea7573d686af5a4b4c6f7fdf452a9a51a9cd25b26cf8538e8922088acd1833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2430,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15627750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chi, J.</creatorcontrib><creatorcontrib>Fu, B.</creatorcontrib><creatorcontrib>Nie, W.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Graphodatsky, A.S.</creatorcontrib><creatorcontrib>Yang, F.</creatorcontrib><title>New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis)</title><title>Cytogenetic and genome research</title><addtitle>Cytogenet Genome Res</addtitle><description>To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6–10, 12–22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1–5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1–5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. </description><subject>Animal Cytogenetics and Comparative Mapping</subject><subject>Animals</subject><subject>Bos frontalis</subject><subject>Bovidae</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Cervidae</subject><subject>China</subject><subject>Chromosome Banding - methods</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome Painting - methods</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Deer - genetics</subject><subject>DNA Probes - genetics</subject><subject>Fibroblasts - chemistry</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Karyotyping</subject><subject>Muntiacus reevesi</subject><subject>Muntjacs - genetics</subject><issn>1424-8581</issn><issn>1424-859X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U2LEzEYB_AgiruuHjwLEjzIFqzmdSZz1KKrsCqIgrchzTzppJ1OZvPMrNQv4tc1a0sXRDCXPIcf_7z8CXnM2UvOdfWK5WW4FuwOOeVKqLnR1fe7x9nwE_IAcc0YN0oX98kJ14UoS81Oya9P8IOGHsOqHTEPY6RjC3Rj0y6OuyE4mqCzY4g9tmFAGj1dtKEHBLqd-nFtHT3_mIdg3YTZwjVgmL2gPibAMRvc0AYgZRXRtdksIcHPeI2bEGbU9g1d2Z3t6PmbiNSn2I-2Czh7SO552yE8Ouxn5Nu7t18X7-eXny8-LF5fzp00ZpyXjQRb6lI2hSms11YtlSt86RuvtLCV1dxWrhF6KQrnjZYGTCUEM8a6hhspz8jzfe6Q4tWUr1xvAzroOttDnLAuSqkkU-y_kJdGsrK4SXz2F1zHKfX5EbUQSnBuWJHRbI9ciogJfD2ksM2fXnNW33RaHzvN9ukhcFpuobmVhxJvT8ytrSAdweLiy5-Eemh8Rk_-ifZn_AZl0rGv</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Chi, J.</creator><creator>Fu, B.</creator><creator>Nie, W.</creator><creator>Wang, J.</creator><creator>Graphodatsky, A.S.</creator><creator>Yang, F.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20050101</creationdate><title>New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis)</title><author>Chi, J. ; Fu, B. ; Nie, W. ; Wang, J. ; Graphodatsky, A.S. ; Yang, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-7d3ea7573d686af5a4b4c6f7fdf452a9a51a9cd25b26cf8538e8922088acd1833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal Cytogenetics and Comparative Mapping</topic><topic>Animals</topic><topic>Bos frontalis</topic><topic>Bovidae</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Cervidae</topic><topic>China</topic><topic>Chromosome Banding - methods</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome Painting - methods</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Deer - genetics</topic><topic>DNA Probes - genetics</topic><topic>Fibroblasts - chemistry</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Karyotyping</topic><topic>Muntiacus reevesi</topic><topic>Muntjacs - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, J.</creatorcontrib><creatorcontrib>Fu, B.</creatorcontrib><creatorcontrib>Nie, W.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Graphodatsky, A.S.</creatorcontrib><creatorcontrib>Yang, F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, J.</au><au>Fu, B.</au><au>Nie, W.</au><au>Wang, J.</au><au>Graphodatsky, A.S.</au><au>Yang, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis)</atitle><jtitle>Cytogenetic and genome research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>108</volume><issue>4</issue><spage>310</spage><epage>316</epage><pages>310-316</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><abstract>To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6–10, 12–22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1–5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1–5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. </abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>15627750</pmid><doi>10.1159/000081520</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8581 |
ispartof | Cytogenetic and genome research, 2005-01, Vol.108 (4), p.310-316 |
issn | 1424-8581 1424-859X |
language | eng |
recordid | cdi_proquest_miscellaneous_67343040 |
source | Karger Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Animal Cytogenetics and Comparative Mapping Animals Bos frontalis Bovidae Cattle Cell Line Cervidae China Chromosome Banding - methods Chromosome Mapping - methods Chromosome Painting - methods Chromosomes, Mammalian - genetics Deer - genetics DNA Probes - genetics Fibroblasts - chemistry Fibroblasts - cytology Fibroblasts - metabolism Karyotyping Muntiacus reevesi Muntjacs - genetics |
title | New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20karyotypic%20relationships%20of%20Chinese%20muntjac%20(Muntiacus%20reevesi),%20forest%20musk%20deer%20(Moschus%20berezovskii)%20and%20gayal%20(Bos%20frontalis)&rft.jtitle=Cytogenetic%20and%20genome%20research&rft.au=Chi,%20J.&rft.date=2005-01-01&rft.volume=108&rft.issue=4&rft.spage=310&rft.epage=316&rft.pages=310-316&rft.issn=1424-8581&rft.eissn=1424-859X&rft_id=info:doi/10.1159/000081520&rft_dat=%3Cproquest_cross%3E17830763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224211806&rft_id=info:pmid/15627750&rfr_iscdi=true |