Some biochemical and histochemical properties of human liver serine dehydratase
In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, w...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2005-03, Vol.37 (3), p.574-589 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 3 |
container_start_page | 574 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 37 |
creator | Kashii, Tatsuhiko Gomi, Tomoharu Oya, Takeshi Ishii, Yoko Oda, Hirofumi Maruyama, Muneharu Kobayashi, Masashi Masuda, Tohru Yamazaki, Mitsuaki Nagata, Takuya Tsukada, Kazuhiro Nakajima, Akinori Tatsu, Kazuhito Mori, Hisashi Takusagawa, Fusao Ogawa, Hirofumi Pitot, Henry C. |
description | In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from
Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from Met
START-Met
2-Ser
3- and the rest from Ser
3-, whereas the N-terminus of rat enzyme begins from the second codon of Met
START-Ala
2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and
Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver. |
doi_str_mv | 10.1016/j.biocel.2004.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67339610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272504003152</els_id><sourcerecordid>67339610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-cc0eabbdb3fea0e794de340ebed988717d067d7f145f51afbeedc5c59f6173803</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6D0S6cteatE2TbgQZfMHALNR1SJMbmqGPMWkH5t-b0oHZuTpJOOfcmw-he4ITgknxtEsq2ytokhTjPME8CXKBloQzHlPO6GU4Z5TFKUvpAt14v8MYE5pm12hBaEF4uCzR9qtvIZqaamitkk0kOx3V1g_nl73r9-AGCz7qTVSPreyixh7ARR6c7SDSUB-1k4P0cIuujGw83J10hX7eXr_XH_Fm-_65ftnEKk-LIVYKg6wqXWUGJAZW5hqyHEMFuuScEaZxwTQzJKeGEmkqAK2ooqUpCMs4zlboce4Ny_2O4AfRWh9oNLKDfvSiYFlWFmQy5rNRud57B0bsnW2lOwqCxQRS7MQMUkwgBeYiSIg9nPrHqgV9Dp3IBcPzbIDwy4MFJ7yy0CnQ1oEahO7t_xP-AIUAiBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67339610</pqid></control><display><type>article</type><title>Some biochemical and histochemical properties of human liver serine dehydratase</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Kashii, Tatsuhiko ; Gomi, Tomoharu ; Oya, Takeshi ; Ishii, Yoko ; Oda, Hirofumi ; Maruyama, Muneharu ; Kobayashi, Masashi ; Masuda, Tohru ; Yamazaki, Mitsuaki ; Nagata, Takuya ; Tsukada, Kazuhiro ; Nakajima, Akinori ; Tatsu, Kazuhito ; Mori, Hisashi ; Takusagawa, Fusao ; Ogawa, Hirofumi ; Pitot, Henry C.</creator><creatorcontrib>Kashii, Tatsuhiko ; Gomi, Tomoharu ; Oya, Takeshi ; Ishii, Yoko ; Oda, Hirofumi ; Maruyama, Muneharu ; Kobayashi, Masashi ; Masuda, Tohru ; Yamazaki, Mitsuaki ; Nagata, Takuya ; Tsukada, Kazuhiro ; Nakajima, Akinori ; Tatsu, Kazuhito ; Mori, Hisashi ; Takusagawa, Fusao ; Ogawa, Hirofumi ; Pitot, Henry C.</creatorcontrib><description>In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from
Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from Met
START-Met
2-Ser
3- and the rest from Ser
3-, whereas the N-terminus of rat enzyme begins from the second codon of Met
START-Ala
2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and
Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2004.08.004</identifier><identifier>PMID: 15618015</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Animals ; Bacterial expression ; Base Sequence ; Blotting, Western ; Chromatography, Gel ; Chromatography, Ion Exchange ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Human liver serine dehydratase ; Humans ; Immunohistochemistry ; Kinetics ; L-Serine Dehydratase - analysis ; L-Serine Dehydratase - chemistry ; L-Serine Dehydratase - drug effects ; L-Serine Dehydratase - genetics ; L-Serine Dehydratase - isolation & purification ; L-Serine Dehydratase - metabolism ; Liver - enzymology ; Localization ; Male ; Molecular Sequence Data ; N-terminal processing ; Peptide Hydrolases - pharmacology ; Proteins - analysis ; Purification ; Rats ; Rats, Wistar ; Recombinant Proteins - analysis ; Recombinant Proteins - chemistry ; Recombinant Proteins - drug effects ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spectrophotometry ; Trypsin - pharmacology</subject><ispartof>The international journal of biochemistry & cell biology, 2005-03, Vol.37 (3), p.574-589</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-cc0eabbdb3fea0e794de340ebed988717d067d7f145f51afbeedc5c59f6173803</citedby><cites>FETCH-LOGICAL-c426t-cc0eabbdb3fea0e794de340ebed988717d067d7f145f51afbeedc5c59f6173803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2004.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15618015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashii, Tatsuhiko</creatorcontrib><creatorcontrib>Gomi, Tomoharu</creatorcontrib><creatorcontrib>Oya, Takeshi</creatorcontrib><creatorcontrib>Ishii, Yoko</creatorcontrib><creatorcontrib>Oda, Hirofumi</creatorcontrib><creatorcontrib>Maruyama, Muneharu</creatorcontrib><creatorcontrib>Kobayashi, Masashi</creatorcontrib><creatorcontrib>Masuda, Tohru</creatorcontrib><creatorcontrib>Yamazaki, Mitsuaki</creatorcontrib><creatorcontrib>Nagata, Takuya</creatorcontrib><creatorcontrib>Tsukada, Kazuhiro</creatorcontrib><creatorcontrib>Nakajima, Akinori</creatorcontrib><creatorcontrib>Tatsu, Kazuhito</creatorcontrib><creatorcontrib>Mori, Hisashi</creatorcontrib><creatorcontrib>Takusagawa, Fusao</creatorcontrib><creatorcontrib>Ogawa, Hirofumi</creatorcontrib><creatorcontrib>Pitot, Henry C.</creatorcontrib><title>Some biochemical and histochemical properties of human liver serine dehydratase</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from
Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from Met
START-Met
2-Ser
3- and the rest from Ser
3-, whereas the N-terminus of rat enzyme begins from the second codon of Met
START-Ala
2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and
Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacterial expression</subject><subject>Base Sequence</subject><subject>Blotting, Western</subject><subject>Chromatography, Gel</subject><subject>Chromatography, Ion Exchange</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Human liver serine dehydratase</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Kinetics</subject><subject>L-Serine Dehydratase - analysis</subject><subject>L-Serine Dehydratase - chemistry</subject><subject>L-Serine Dehydratase - drug effects</subject><subject>L-Serine Dehydratase - genetics</subject><subject>L-Serine Dehydratase - isolation & purification</subject><subject>L-Serine Dehydratase - metabolism</subject><subject>Liver - enzymology</subject><subject>Localization</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>N-terminal processing</subject><subject>Peptide Hydrolases - pharmacology</subject><subject>Proteins - analysis</subject><subject>Purification</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recombinant Proteins - analysis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - drug effects</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spectrophotometry</subject><subject>Trypsin - pharmacology</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMozjj6D0S6cteatE2TbgQZfMHALNR1SJMbmqGPMWkH5t-b0oHZuTpJOOfcmw-he4ITgknxtEsq2ytokhTjPME8CXKBloQzHlPO6GU4Z5TFKUvpAt14v8MYE5pm12hBaEF4uCzR9qtvIZqaamitkk0kOx3V1g_nl73r9-AGCz7qTVSPreyixh7ARR6c7SDSUB-1k4P0cIuujGw83J10hX7eXr_XH_Fm-_65ftnEKk-LIVYKg6wqXWUGJAZW5hqyHEMFuuScEaZxwTQzJKeGEmkqAK2ooqUpCMs4zlboce4Ny_2O4AfRWh9oNLKDfvSiYFlWFmQy5rNRud57B0bsnW2lOwqCxQRS7MQMUkwgBeYiSIg9nPrHqgV9Dp3IBcPzbIDwy4MFJ7yy0CnQ1oEahO7t_xP-AIUAiBA</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Kashii, Tatsuhiko</creator><creator>Gomi, Tomoharu</creator><creator>Oya, Takeshi</creator><creator>Ishii, Yoko</creator><creator>Oda, Hirofumi</creator><creator>Maruyama, Muneharu</creator><creator>Kobayashi, Masashi</creator><creator>Masuda, Tohru</creator><creator>Yamazaki, Mitsuaki</creator><creator>Nagata, Takuya</creator><creator>Tsukada, Kazuhiro</creator><creator>Nakajima, Akinori</creator><creator>Tatsu, Kazuhito</creator><creator>Mori, Hisashi</creator><creator>Takusagawa, Fusao</creator><creator>Ogawa, Hirofumi</creator><creator>Pitot, Henry C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Some biochemical and histochemical properties of human liver serine dehydratase</title><author>Kashii, Tatsuhiko ; Gomi, Tomoharu ; Oya, Takeshi ; Ishii, Yoko ; Oda, Hirofumi ; Maruyama, Muneharu ; Kobayashi, Masashi ; Masuda, Tohru ; Yamazaki, Mitsuaki ; Nagata, Takuya ; Tsukada, Kazuhiro ; Nakajima, Akinori ; Tatsu, Kazuhito ; Mori, Hisashi ; Takusagawa, Fusao ; Ogawa, Hirofumi ; Pitot, Henry C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-cc0eabbdb3fea0e794de340ebed988717d067d7f145f51afbeedc5c59f6173803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacterial expression</topic><topic>Base Sequence</topic><topic>Blotting, Western</topic><topic>Chromatography, Gel</topic><topic>Chromatography, Ion Exchange</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Human liver serine dehydratase</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Kinetics</topic><topic>L-Serine Dehydratase - analysis</topic><topic>L-Serine Dehydratase - chemistry</topic><topic>L-Serine Dehydratase - drug effects</topic><topic>L-Serine Dehydratase - genetics</topic><topic>L-Serine Dehydratase - isolation & purification</topic><topic>L-Serine Dehydratase - metabolism</topic><topic>Liver - enzymology</topic><topic>Localization</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>N-terminal processing</topic><topic>Peptide Hydrolases - pharmacology</topic><topic>Proteins - analysis</topic><topic>Purification</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recombinant Proteins - analysis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - drug effects</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spectrophotometry</topic><topic>Trypsin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashii, Tatsuhiko</creatorcontrib><creatorcontrib>Gomi, Tomoharu</creatorcontrib><creatorcontrib>Oya, Takeshi</creatorcontrib><creatorcontrib>Ishii, Yoko</creatorcontrib><creatorcontrib>Oda, Hirofumi</creatorcontrib><creatorcontrib>Maruyama, Muneharu</creatorcontrib><creatorcontrib>Kobayashi, Masashi</creatorcontrib><creatorcontrib>Masuda, Tohru</creatorcontrib><creatorcontrib>Yamazaki, Mitsuaki</creatorcontrib><creatorcontrib>Nagata, Takuya</creatorcontrib><creatorcontrib>Tsukada, Kazuhiro</creatorcontrib><creatorcontrib>Nakajima, Akinori</creatorcontrib><creatorcontrib>Tatsu, Kazuhito</creatorcontrib><creatorcontrib>Mori, Hisashi</creatorcontrib><creatorcontrib>Takusagawa, Fusao</creatorcontrib><creatorcontrib>Ogawa, Hirofumi</creatorcontrib><creatorcontrib>Pitot, Henry C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashii, Tatsuhiko</au><au>Gomi, Tomoharu</au><au>Oya, Takeshi</au><au>Ishii, Yoko</au><au>Oda, Hirofumi</au><au>Maruyama, Muneharu</au><au>Kobayashi, Masashi</au><au>Masuda, Tohru</au><au>Yamazaki, Mitsuaki</au><au>Nagata, Takuya</au><au>Tsukada, Kazuhiro</au><au>Nakajima, Akinori</au><au>Tatsu, Kazuhito</au><au>Mori, Hisashi</au><au>Takusagawa, Fusao</au><au>Ogawa, Hirofumi</au><au>Pitot, Henry C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some biochemical and histochemical properties of human liver serine dehydratase</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>37</volume><issue>3</issue><spage>574</spage><epage>589</epage><pages>574-589</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from
Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from Met
START-Met
2-Ser
3- and the rest from Ser
3-, whereas the N-terminus of rat enzyme begins from the second codon of Met
START-Ala
2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and
Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15618015</pmid><doi>10.1016/j.biocel.2004.08.004</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2005-03, Vol.37 (3), p.574-589 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_proquest_miscellaneous_67339610 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Amino Acid Sequence Animals Bacterial expression Base Sequence Blotting, Western Chromatography, Gel Chromatography, Ion Exchange Electrophoresis, Polyacrylamide Gel Escherichia coli - genetics Escherichia coli - growth & development Human liver serine dehydratase Humans Immunohistochemistry Kinetics L-Serine Dehydratase - analysis L-Serine Dehydratase - chemistry L-Serine Dehydratase - drug effects L-Serine Dehydratase - genetics L-Serine Dehydratase - isolation & purification L-Serine Dehydratase - metabolism Liver - enzymology Localization Male Molecular Sequence Data N-terminal processing Peptide Hydrolases - pharmacology Proteins - analysis Purification Rats Rats, Wistar Recombinant Proteins - analysis Recombinant Proteins - chemistry Recombinant Proteins - drug effects Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Sequence Homology, Amino Acid Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Spectrophotometry Trypsin - pharmacology |
title | Some biochemical and histochemical properties of human liver serine dehydratase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20biochemical%20and%20histochemical%20properties%20of%20human%20liver%20serine%20dehydratase&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Kashii,%20Tatsuhiko&rft.date=2005-03-01&rft.volume=37&rft.issue=3&rft.spage=574&rft.epage=589&rft.pages=574-589&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2004.08.004&rft_dat=%3Cproquest_cross%3E67339610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67339610&rft_id=info:pmid/15618015&rft_els_id=S1357272504003152&rfr_iscdi=true |