Simulation of pulmonary ventilation and its control by negative feedback

The equivalent electronic circuit developed to simulate pulmonary ventilation is upgraded to incorporate homeostasis, i.e. a negative feedback loop. The latter can be made either inactive or active. In the former condition, only the immediate consequence of a disturbance shows up. In the latter cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2005-03, Vol.35 (3), p.217-228
Hauptverfasser: Dolenšek, J., Runovc, F., Kordaš, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 3
container_start_page 217
container_title Computers in biology and medicine
container_volume 35
creator Dolenšek, J.
Runovc, F.
Kordaš, M.
description The equivalent electronic circuit developed to simulate pulmonary ventilation is upgraded to incorporate homeostasis, i.e. a negative feedback loop. The latter can be made either inactive or active. In the former condition, only the immediate consequence of a disturbance shows up. In the latter condition, however, full homeostatic—sometimes very complex—response can be studied. The effects of three types of disturbances are studied in both conditions (i.e. open loop, closed loop): increased CO 2 production, temporary apnoea, and of bronchoconstriction (in the whole lung or only in part of the lung). The effect of increased CO 2 production is increase in pulmonary ventilation and increase in pCO 2. The latter strongly depends on the feedback response. Temporary apnoea results in a transient increase in pCO 2. However, if the time constant of the feedback loop is large enough, this type of disturbance results in a maintained periodic, Cheyne–Stokes-type breathing. Bronchoconstriction in 100% of the lung results in a decrease in tidal volume. If homeostasis is active this decrease is compensated by an increase in the inspiratory effort. However, if bronchoconstriction occurs only in 50% of the lung, inspiratory effort is greatly changed through inter-alveolar elastic interactions, giving rise to the so-called pendelluft.
doi_str_mv 10.1016/j.compbiomed.2004.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67329923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482504000265</els_id><sourcerecordid>57638268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-6f213fb42fb30872f17fef3a0081936cc69d8c56978a8ed2ebc8aa0ab81e991f3</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoMo7rj6ChIQvHVbSbqT9FEXdYUFD-o5pNMVydidjEn3wL69GWZQ8DKnHP6vqsj_EUIZtAyYfLdvXVoOY0gLTi0H6FrgLQB_QnZMq6GBXnRPyQ6AQdNp3t-QF6XsoYIg4Dm5YX2vueTDjtx_C8s22zWkSJOnh21eUrT5kR4xruES2DjRsBbqUlxzmun4SCP-rNkRqUecRut-vSTPvJ0Lvrq8t-THp4_f7-6bh6-fv9y9f2hcJ2FtpOdM-LHjfhSgFfdMefTCAmg2COmcHCbtejkobTVOHEenrQU7aobDwLy4JW_Pew85_d6wrGYJxeE824hpK0YqwYeBi6tgr6SoJeirIFNaQy2rgm_-A_dpy7H-1jDgqu-kUn2l9JlyOZWS0ZtDDkuttELmZM_szT975mTPADfVXh19fTmwjafs7-BFVwU-nAGsDR8DZlNcwOhwChndaqYUrl_5A1VVr-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027546775</pqid></control><display><type>article</type><title>Simulation of pulmonary ventilation and its control by negative feedback</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dolenšek, J. ; Runovc, F. ; Kordaš, M.</creator><creatorcontrib>Dolenšek, J. ; Runovc, F. ; Kordaš, M.</creatorcontrib><description>The equivalent electronic circuit developed to simulate pulmonary ventilation is upgraded to incorporate homeostasis, i.e. a negative feedback loop. The latter can be made either inactive or active. In the former condition, only the immediate consequence of a disturbance shows up. In the latter condition, however, full homeostatic—sometimes very complex—response can be studied. The effects of three types of disturbances are studied in both conditions (i.e. open loop, closed loop): increased CO 2 production, temporary apnoea, and of bronchoconstriction (in the whole lung or only in part of the lung). The effect of increased CO 2 production is increase in pulmonary ventilation and increase in pCO 2. The latter strongly depends on the feedback response. Temporary apnoea results in a transient increase in pCO 2. However, if the time constant of the feedback loop is large enough, this type of disturbance results in a maintained periodic, Cheyne–Stokes-type breathing. Bronchoconstriction in 100% of the lung results in a decrease in tidal volume. If homeostasis is active this decrease is compensated by an increase in the inspiratory effort. However, if bronchoconstriction occurs only in 50% of the lung, inspiratory effort is greatly changed through inter-alveolar elastic interactions, giving rise to the so-called pendelluft.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2004.02.002</identifier><identifier>PMID: 15582629</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anatomy &amp; physiology ; Colleges &amp; universities ; Computer applications ; Computer Simulation ; Electric Conductivity ; Expert systems ; Feedback ; Health care ; Homeostasis ; Humans ; Lungs ; Mathematical models ; Medicine ; Models, Biological ; Pulmonary physiology ; Pulmonary Ventilation ; Simulation ; Ventilation</subject><ispartof>Computers in biology and medicine, 2005-03, Vol.35 (3), p.217-228</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-6f213fb42fb30872f17fef3a0081936cc69d8c56978a8ed2ebc8aa0ab81e991f3</citedby><cites>FETCH-LOGICAL-c460t-6f213fb42fb30872f17fef3a0081936cc69d8c56978a8ed2ebc8aa0ab81e991f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482504000265$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15582629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolenšek, J.</creatorcontrib><creatorcontrib>Runovc, F.</creatorcontrib><creatorcontrib>Kordaš, M.</creatorcontrib><title>Simulation of pulmonary ventilation and its control by negative feedback</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The equivalent electronic circuit developed to simulate pulmonary ventilation is upgraded to incorporate homeostasis, i.e. a negative feedback loop. The latter can be made either inactive or active. In the former condition, only the immediate consequence of a disturbance shows up. In the latter condition, however, full homeostatic—sometimes very complex—response can be studied. The effects of three types of disturbances are studied in both conditions (i.e. open loop, closed loop): increased CO 2 production, temporary apnoea, and of bronchoconstriction (in the whole lung or only in part of the lung). The effect of increased CO 2 production is increase in pulmonary ventilation and increase in pCO 2. The latter strongly depends on the feedback response. Temporary apnoea results in a transient increase in pCO 2. However, if the time constant of the feedback loop is large enough, this type of disturbance results in a maintained periodic, Cheyne–Stokes-type breathing. Bronchoconstriction in 100% of the lung results in a decrease in tidal volume. If homeostasis is active this decrease is compensated by an increase in the inspiratory effort. However, if bronchoconstriction occurs only in 50% of the lung, inspiratory effort is greatly changed through inter-alveolar elastic interactions, giving rise to the so-called pendelluft.</description><subject>Anatomy &amp; physiology</subject><subject>Colleges &amp; universities</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Electric Conductivity</subject><subject>Expert systems</subject><subject>Feedback</subject><subject>Health care</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Pulmonary physiology</subject><subject>Pulmonary Ventilation</subject><subject>Simulation</subject><subject>Ventilation</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcGKFDEQhoMo7rj6ChIQvHVbSbqT9FEXdYUFD-o5pNMVydidjEn3wL69GWZQ8DKnHP6vqsj_EUIZtAyYfLdvXVoOY0gLTi0H6FrgLQB_QnZMq6GBXnRPyQ6AQdNp3t-QF6XsoYIg4Dm5YX2vueTDjtx_C8s22zWkSJOnh21eUrT5kR4xruES2DjRsBbqUlxzmun4SCP-rNkRqUecRut-vSTPvJ0Lvrq8t-THp4_f7-6bh6-fv9y9f2hcJ2FtpOdM-LHjfhSgFfdMefTCAmg2COmcHCbtejkobTVOHEenrQU7aobDwLy4JW_Pew85_d6wrGYJxeE824hpK0YqwYeBi6tgr6SoJeirIFNaQy2rgm_-A_dpy7H-1jDgqu-kUn2l9JlyOZWS0ZtDDkuttELmZM_szT975mTPADfVXh19fTmwjafs7-BFVwU-nAGsDR8DZlNcwOhwChndaqYUrl_5A1VVr-0</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Dolenšek, J.</creator><creator>Runovc, F.</creator><creator>Kordaš, M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Simulation of pulmonary ventilation and its control by negative feedback</title><author>Dolenšek, J. ; Runovc, F. ; Kordaš, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-6f213fb42fb30872f17fef3a0081936cc69d8c56978a8ed2ebc8aa0ab81e991f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anatomy &amp; physiology</topic><topic>Colleges &amp; universities</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Electric Conductivity</topic><topic>Expert systems</topic><topic>Feedback</topic><topic>Health care</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Pulmonary physiology</topic><topic>Pulmonary Ventilation</topic><topic>Simulation</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolenšek, J.</creatorcontrib><creatorcontrib>Runovc, F.</creatorcontrib><creatorcontrib>Kordaš, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolenšek, J.</au><au>Runovc, F.</au><au>Kordaš, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of pulmonary ventilation and its control by negative feedback</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>35</volume><issue>3</issue><spage>217</spage><epage>228</epage><pages>217-228</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>The equivalent electronic circuit developed to simulate pulmonary ventilation is upgraded to incorporate homeostasis, i.e. a negative feedback loop. The latter can be made either inactive or active. In the former condition, only the immediate consequence of a disturbance shows up. In the latter condition, however, full homeostatic—sometimes very complex—response can be studied. The effects of three types of disturbances are studied in both conditions (i.e. open loop, closed loop): increased CO 2 production, temporary apnoea, and of bronchoconstriction (in the whole lung or only in part of the lung). The effect of increased CO 2 production is increase in pulmonary ventilation and increase in pCO 2. The latter strongly depends on the feedback response. Temporary apnoea results in a transient increase in pCO 2. However, if the time constant of the feedback loop is large enough, this type of disturbance results in a maintained periodic, Cheyne–Stokes-type breathing. Bronchoconstriction in 100% of the lung results in a decrease in tidal volume. If homeostasis is active this decrease is compensated by an increase in the inspiratory effort. However, if bronchoconstriction occurs only in 50% of the lung, inspiratory effort is greatly changed through inter-alveolar elastic interactions, giving rise to the so-called pendelluft.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15582629</pmid><doi>10.1016/j.compbiomed.2004.02.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2005-03, Vol.35 (3), p.217-228
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_67329923
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anatomy & physiology
Colleges & universities
Computer applications
Computer Simulation
Electric Conductivity
Expert systems
Feedback
Health care
Homeostasis
Humans
Lungs
Mathematical models
Medicine
Models, Biological
Pulmonary physiology
Pulmonary Ventilation
Simulation
Ventilation
title Simulation of pulmonary ventilation and its control by negative feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20pulmonary%20ventilation%20and%20its%20control%20by%20negative%20feedback&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Dolen%C5%A1ek,%20J.&rft.date=2005-03-01&rft.volume=35&rft.issue=3&rft.spage=217&rft.epage=228&rft.pages=217-228&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2004.02.002&rft_dat=%3Cproquest_cross%3E57638268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027546775&rft_id=info:pmid/15582629&rft_els_id=S0010482504000265&rfr_iscdi=true