Alternative Runx1 promoter usage in mouse developmental hematopoiesis

The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells buddin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood cells, molecules, & diseases molecules, & diseases, 2009-07, Vol.43 (1), p.35-42
Hauptverfasser: Bee, Thomas, Liddiard, Kate, Swiers, Gemma, Bickley, Sorrel R.B., Vink, Chris S., Jarratt, Andrew, Hughes, Jim R., Medvinsky, Alexander, de Bruijn, Marella F.T.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 35
container_title Blood cells, molecules, & diseases
container_volume 43
creator Bee, Thomas
Liddiard, Kate
Swiers, Gemma
Bickley, Sorrel R.B.
Vink, Chris S.
Jarratt, Andrew
Hughes, Jim R.
Medvinsky, Alexander
de Bruijn, Marella F.T.R.
description The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells budding from the luminal wall of the major arteries in the developing mammalian embryo. The transcription factor Runx1 is critical for their generation and is specifically expressed at sites of HSC generation, prior to their formation. To understand better the transcriptional hierarchies that converge on Runx1 during HSC emergence, we have initiated studies into its transcriptional regulation. Here we systematically analyzed Runx1 P1 and P2 alternative promoter usage in hematopoietic sites and in sorted cell populations during mouse hematopoietic development. Our results indicate that Runx1 expression in primitive erythrocytes is largely P2-derived, whilst in definitive hematopoietic stem and/or progenitor cells from the yolk sac or AGM and vitelline and umbilical arteries both the distal P1 and proximal P2 promoters are active. After cells have migrated to the fetal liver, the P1 gradually becomes the main hematopoietic promoter and remains this into adulthood. In addition, we identified a novel P2-derived Runx1 isoform.
doi_str_mv 10.1016/j.bcmd.2009.03.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67327905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107997960900103X</els_id><sourcerecordid>67327905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-5df0905330f0ef177113a833897c97a998fab3ef36aa5b359d7b6d65982a55163</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIT95ak2aTNOBlWdYPWBBEzyFNppqlaWvTLvrvTdkFbx6GGYZ33pl5ELomOCOY8LtdVhpvsxxjmWGaYUJO0JxgydMY5HSqhUylkHyGLkLYYRwlsjhHMyKXfJkTNkebVT1A3-jB7SF5HZtvknR969vYTMagPyBxTeLbMUBiYQ9123loBl0nn-D10Hatg-DCJTqrdB3g6pgX6P1h87Z-Srcvj8_r1TY1lC2HlNkKS8woxRWGighBCNUFpYUURgotZVHpkkJFudaspExaUXLLmSxyzRjhdIFuD77xxq8RwqC8CwbqWjcQb1Rc0FxMGxYoPwhN34bQQ6W63nnd_yiC1QRP7dQET03wFKYqkolDN0f3sfRg_0aOtKLg_iCA-OPeQa-CcdAYsK4HMyjbuv_8fwFXN4AX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67327905</pqid></control><display><type>article</type><title>Alternative Runx1 promoter usage in mouse developmental hematopoiesis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bee, Thomas ; Liddiard, Kate ; Swiers, Gemma ; Bickley, Sorrel R.B. ; Vink, Chris S. ; Jarratt, Andrew ; Hughes, Jim R. ; Medvinsky, Alexander ; de Bruijn, Marella F.T.R.</creator><creatorcontrib>Bee, Thomas ; Liddiard, Kate ; Swiers, Gemma ; Bickley, Sorrel R.B. ; Vink, Chris S. ; Jarratt, Andrew ; Hughes, Jim R. ; Medvinsky, Alexander ; de Bruijn, Marella F.T.R.</creatorcontrib><description>The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells budding from the luminal wall of the major arteries in the developing mammalian embryo. The transcription factor Runx1 is critical for their generation and is specifically expressed at sites of HSC generation, prior to their formation. To understand better the transcriptional hierarchies that converge on Runx1 during HSC emergence, we have initiated studies into its transcriptional regulation. Here we systematically analyzed Runx1 P1 and P2 alternative promoter usage in hematopoietic sites and in sorted cell populations during mouse hematopoietic development. Our results indicate that Runx1 expression in primitive erythrocytes is largely P2-derived, whilst in definitive hematopoietic stem and/or progenitor cells from the yolk sac or AGM and vitelline and umbilical arteries both the distal P1 and proximal P2 promoters are active. After cells have migrated to the fetal liver, the P1 gradually becomes the main hematopoietic promoter and remains this into adulthood. In addition, we identified a novel P2-derived Runx1 isoform.</description><identifier>ISSN: 1079-9796</identifier><identifier>EISSN: 1096-0961</identifier><identifier>DOI: 10.1016/j.bcmd.2009.03.011</identifier><identifier>PMID: 19464215</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aorta - cytology ; Aorta - embryology ; Aorta - physiology ; Base Sequence ; Core Binding Factor Alpha 2 Subunit - genetics ; Core Binding Factor Alpha 2 Subunit - metabolism ; Development ; Female ; Gene Expression Regulation, Developmental ; Hematopoiesis ; Hematopoietic stem and progenitor cells ; Humans ; Liver - cytology ; Liver - embryology ; Liver - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mouse ; Placenta - cytology ; Placenta - embryology ; Placenta - physiology ; Pregnancy ; Promoter Regions, Genetic ; Runx1 ; Sequence Alignment ; Transcription, Genetic ; Transcriptional regulation ; Yolk Sac - cytology ; Yolk Sac - embryology ; Yolk Sac - physiology</subject><ispartof>Blood cells, molecules, &amp; diseases, 2009-07, Vol.43 (1), p.35-42</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-5df0905330f0ef177113a833897c97a998fab3ef36aa5b359d7b6d65982a55163</citedby><cites>FETCH-LOGICAL-c354t-5df0905330f0ef177113a833897c97a998fab3ef36aa5b359d7b6d65982a55163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S107997960900103X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19464215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bee, Thomas</creatorcontrib><creatorcontrib>Liddiard, Kate</creatorcontrib><creatorcontrib>Swiers, Gemma</creatorcontrib><creatorcontrib>Bickley, Sorrel R.B.</creatorcontrib><creatorcontrib>Vink, Chris S.</creatorcontrib><creatorcontrib>Jarratt, Andrew</creatorcontrib><creatorcontrib>Hughes, Jim R.</creatorcontrib><creatorcontrib>Medvinsky, Alexander</creatorcontrib><creatorcontrib>de Bruijn, Marella F.T.R.</creatorcontrib><title>Alternative Runx1 promoter usage in mouse developmental hematopoiesis</title><title>Blood cells, molecules, &amp; diseases</title><addtitle>Blood Cells Mol Dis</addtitle><description>The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells budding from the luminal wall of the major arteries in the developing mammalian embryo. The transcription factor Runx1 is critical for their generation and is specifically expressed at sites of HSC generation, prior to their formation. To understand better the transcriptional hierarchies that converge on Runx1 during HSC emergence, we have initiated studies into its transcriptional regulation. Here we systematically analyzed Runx1 P1 and P2 alternative promoter usage in hematopoietic sites and in sorted cell populations during mouse hematopoietic development. Our results indicate that Runx1 expression in primitive erythrocytes is largely P2-derived, whilst in definitive hematopoietic stem and/or progenitor cells from the yolk sac or AGM and vitelline and umbilical arteries both the distal P1 and proximal P2 promoters are active. After cells have migrated to the fetal liver, the P1 gradually becomes the main hematopoietic promoter and remains this into adulthood. In addition, we identified a novel P2-derived Runx1 isoform.</description><subject>Animals</subject><subject>Aorta - cytology</subject><subject>Aorta - embryology</subject><subject>Aorta - physiology</subject><subject>Base Sequence</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Core Binding Factor Alpha 2 Subunit - metabolism</subject><subject>Development</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem and progenitor cells</subject><subject>Humans</subject><subject>Liver - cytology</subject><subject>Liver - embryology</subject><subject>Liver - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mouse</subject><subject>Placenta - cytology</subject><subject>Placenta - embryology</subject><subject>Placenta - physiology</subject><subject>Pregnancy</subject><subject>Promoter Regions, Genetic</subject><subject>Runx1</subject><subject>Sequence Alignment</subject><subject>Transcription, Genetic</subject><subject>Transcriptional regulation</subject><subject>Yolk Sac - cytology</subject><subject>Yolk Sac - embryology</subject><subject>Yolk Sac - physiology</subject><issn>1079-9796</issn><issn>1096-0961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIT95ak2aTNOBlWdYPWBBEzyFNppqlaWvTLvrvTdkFbx6GGYZ33pl5ELomOCOY8LtdVhpvsxxjmWGaYUJO0JxgydMY5HSqhUylkHyGLkLYYRwlsjhHMyKXfJkTNkebVT1A3-jB7SF5HZtvknR969vYTMagPyBxTeLbMUBiYQ9123loBl0nn-D10Hatg-DCJTqrdB3g6pgX6P1h87Z-Srcvj8_r1TY1lC2HlNkKS8woxRWGighBCNUFpYUURgotZVHpkkJFudaspExaUXLLmSxyzRjhdIFuD77xxq8RwqC8CwbqWjcQb1Rc0FxMGxYoPwhN34bQQ6W63nnd_yiC1QRP7dQET03wFKYqkolDN0f3sfRg_0aOtKLg_iCA-OPeQa-CcdAYsK4HMyjbuv_8fwFXN4AX</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Bee, Thomas</creator><creator>Liddiard, Kate</creator><creator>Swiers, Gemma</creator><creator>Bickley, Sorrel R.B.</creator><creator>Vink, Chris S.</creator><creator>Jarratt, Andrew</creator><creator>Hughes, Jim R.</creator><creator>Medvinsky, Alexander</creator><creator>de Bruijn, Marella F.T.R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Alternative Runx1 promoter usage in mouse developmental hematopoiesis</title><author>Bee, Thomas ; Liddiard, Kate ; Swiers, Gemma ; Bickley, Sorrel R.B. ; Vink, Chris S. ; Jarratt, Andrew ; Hughes, Jim R. ; Medvinsky, Alexander ; de Bruijn, Marella F.T.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-5df0905330f0ef177113a833897c97a998fab3ef36aa5b359d7b6d65982a55163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Aorta - cytology</topic><topic>Aorta - embryology</topic><topic>Aorta - physiology</topic><topic>Base Sequence</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Core Binding Factor Alpha 2 Subunit - metabolism</topic><topic>Development</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem and progenitor cells</topic><topic>Humans</topic><topic>Liver - cytology</topic><topic>Liver - embryology</topic><topic>Liver - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mouse</topic><topic>Placenta - cytology</topic><topic>Placenta - embryology</topic><topic>Placenta - physiology</topic><topic>Pregnancy</topic><topic>Promoter Regions, Genetic</topic><topic>Runx1</topic><topic>Sequence Alignment</topic><topic>Transcription, Genetic</topic><topic>Transcriptional regulation</topic><topic>Yolk Sac - cytology</topic><topic>Yolk Sac - embryology</topic><topic>Yolk Sac - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bee, Thomas</creatorcontrib><creatorcontrib>Liddiard, Kate</creatorcontrib><creatorcontrib>Swiers, Gemma</creatorcontrib><creatorcontrib>Bickley, Sorrel R.B.</creatorcontrib><creatorcontrib>Vink, Chris S.</creatorcontrib><creatorcontrib>Jarratt, Andrew</creatorcontrib><creatorcontrib>Hughes, Jim R.</creatorcontrib><creatorcontrib>Medvinsky, Alexander</creatorcontrib><creatorcontrib>de Bruijn, Marella F.T.R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood cells, molecules, &amp; diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bee, Thomas</au><au>Liddiard, Kate</au><au>Swiers, Gemma</au><au>Bickley, Sorrel R.B.</au><au>Vink, Chris S.</au><au>Jarratt, Andrew</au><au>Hughes, Jim R.</au><au>Medvinsky, Alexander</au><au>de Bruijn, Marella F.T.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative Runx1 promoter usage in mouse developmental hematopoiesis</atitle><jtitle>Blood cells, molecules, &amp; diseases</jtitle><addtitle>Blood Cells Mol Dis</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>43</volume><issue>1</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1079-9796</issn><eissn>1096-0961</eissn><abstract>The interest in stem cell based therapies has emphasized the importance of understanding the cellular and molecular mechanisms by which stem cells are generated in ontogeny and maintained throughout adult life. Hematopoietic stem cells (HSCs) are first found in clusters of hematopoietic cells budding from the luminal wall of the major arteries in the developing mammalian embryo. The transcription factor Runx1 is critical for their generation and is specifically expressed at sites of HSC generation, prior to their formation. To understand better the transcriptional hierarchies that converge on Runx1 during HSC emergence, we have initiated studies into its transcriptional regulation. Here we systematically analyzed Runx1 P1 and P2 alternative promoter usage in hematopoietic sites and in sorted cell populations during mouse hematopoietic development. Our results indicate that Runx1 expression in primitive erythrocytes is largely P2-derived, whilst in definitive hematopoietic stem and/or progenitor cells from the yolk sac or AGM and vitelline and umbilical arteries both the distal P1 and proximal P2 promoters are active. After cells have migrated to the fetal liver, the P1 gradually becomes the main hematopoietic promoter and remains this into adulthood. In addition, we identified a novel P2-derived Runx1 isoform.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19464215</pmid><doi>10.1016/j.bcmd.2009.03.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1079-9796
ispartof Blood cells, molecules, & diseases, 2009-07, Vol.43 (1), p.35-42
issn 1079-9796
1096-0961
language eng
recordid cdi_proquest_miscellaneous_67327905
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Aorta - cytology
Aorta - embryology
Aorta - physiology
Base Sequence
Core Binding Factor Alpha 2 Subunit - genetics
Core Binding Factor Alpha 2 Subunit - metabolism
Development
Female
Gene Expression Regulation, Developmental
Hematopoiesis
Hematopoietic stem and progenitor cells
Humans
Liver - cytology
Liver - embryology
Liver - physiology
Male
Mice
Mice, Inbred C57BL
Mouse
Placenta - cytology
Placenta - embryology
Placenta - physiology
Pregnancy
Promoter Regions, Genetic
Runx1
Sequence Alignment
Transcription, Genetic
Transcriptional regulation
Yolk Sac - cytology
Yolk Sac - embryology
Yolk Sac - physiology
title Alternative Runx1 promoter usage in mouse developmental hematopoiesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20Runx1%20promoter%20usage%20in%20mouse%20developmental%20hematopoiesis&rft.jtitle=Blood%20cells,%20molecules,%20&%20diseases&rft.au=Bee,%20Thomas&rft.date=2009-07-01&rft.volume=43&rft.issue=1&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1079-9796&rft.eissn=1096-0961&rft_id=info:doi/10.1016/j.bcmd.2009.03.011&rft_dat=%3Cproquest_cross%3E67327905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67327905&rft_id=info:pmid/19464215&rft_els_id=S107997960900103X&rfr_iscdi=true