Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair

Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydrox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2009-07, Vol.20 (7), p.1571-1577
Hauptverfasser: Hejcl, A, Lesný, P, Prádný, M, Sedý, J, Zámecník, J, Jendelová, P, Michálek, J, Syková, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1577
container_issue 7
container_start_page 1571
container_title Journal of materials science. Materials in medicine
container_volume 20
creator Hejcl, A
Lesný, P
Prádný, M
Sedý, J
Zámecník, J
Jendelová, P
Michálek, J
Syková, E
description Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.
doi_str_mv 10.1007/s10856-009-3714-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67323734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36327658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-8509d89e34504be933379a6f539c8f2db25ab74a6399f0deb377fe3ce80c16793</originalsourceid><addsrcrecordid>eNqFUsuO1DAQtBCIHQY-gAuyOHDLYqf95IaWp7QIDnCOnKQzk5EnDnaybH6M78PzkBYhob243V1V3VJ3EfKcs0vOmH6dODNSFYzZAjQXhXhAVlxqKIQB85CsmJW6EBLYBXmS0o4xJqyUj8kFt6UsrTIr8vuLa2IYQwxzotuljWGDPtHaJWxpGGhZHIu3C07bxdN9DlmweDfhJf3m4kTVGwrv_pL-6qctHUPqp_4GqRtaOuDGHZM0x841SJutixtMR3AMfkGPzRTzZ8pY2I8ebzPaDzSN_eB8rsU2p7s5LjTi6Pr4lDzqnE_47BzX5MeH99-vPhXXXz9-vnp7XTQC-FQYyWxrLIKQTNRoAUBbpzoJtjFd2daldLUWToG1HWuxBq07hAYNa7jSFtbk1anvGMPPGdNU7fvUoPduwLyxSmkoQYO4lwgKSq2kuZdYcuCK5XdNXv5D3IU55nVkTsm50dYexvITKR8xpYhdNcZ-7-JScVYdPFKdPFJlj1QHj1QHzYtz47neY3unOJsiE8oTIWVo2GC8m_z_rn8A5o_KRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221187994</pqid></control><display><type>article</type><title>Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hejcl, A ; Lesný, P ; Prádný, M ; Sedý, J ; Zámecník, J ; Jendelová, P ; Michálek, J ; Syková, E</creator><creatorcontrib>Hejcl, A ; Lesný, P ; Prádný, M ; Sedý, J ; Zámecník, J ; Jendelová, P ; Michálek, J ; Syková, E</creatorcontrib><description>Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-009-3714-4</identifier><identifier>PMID: 19252968</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biocompatible Materials - therapeutic use ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Ceramics ; Chemistry and Materials Science ; Composites ; Glass ; Guided Tissue Regeneration - methods ; Hydrogels ; Hydrogels - therapeutic use ; Male ; Materials Science ; Materials Testing ; Methacrylates - therapeutic use ; Natural Materials ; Nerve Regeneration ; Nervous system ; Polymer Sciences ; Porosity ; Rats ; Rats, Wistar ; Regenerative Medicine/Tissue Engineering ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - therapy ; Static Electricity ; Surface Properties ; Surfaces and Interfaces ; Thin Films ; Thoracic Vertebrae - injuries ; Thoracic Vertebrae - pathology ; Tissue engineering ; Treatment Outcome</subject><ispartof>Journal of materials science. Materials in medicine, 2009-07, Vol.20 (7), p.1571-1577</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-8509d89e34504be933379a6f539c8f2db25ab74a6399f0deb377fe3ce80c16793</citedby><cites>FETCH-LOGICAL-c431t-8509d89e34504be933379a6f539c8f2db25ab74a6399f0deb377fe3ce80c16793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-009-3714-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-009-3714-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19252968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hejcl, A</creatorcontrib><creatorcontrib>Lesný, P</creatorcontrib><creatorcontrib>Prádný, M</creatorcontrib><creatorcontrib>Sedý, J</creatorcontrib><creatorcontrib>Zámecník, J</creatorcontrib><creatorcontrib>Jendelová, P</creatorcontrib><creatorcontrib>Michálek, J</creatorcontrib><creatorcontrib>Syková, E</creatorcontrib><title>Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.</description><subject>Animals</subject><subject>Biocompatible Materials - therapeutic use</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Hydrogels</subject><subject>Hydrogels - therapeutic use</subject><subject>Male</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Methacrylates - therapeutic use</subject><subject>Natural Materials</subject><subject>Nerve Regeneration</subject><subject>Nervous system</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Static Electricity</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thoracic Vertebrae - injuries</subject><subject>Thoracic Vertebrae - pathology</subject><subject>Tissue engineering</subject><subject>Treatment Outcome</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUsuO1DAQtBCIHQY-gAuyOHDLYqf95IaWp7QIDnCOnKQzk5EnDnaybH6M78PzkBYhob243V1V3VJ3EfKcs0vOmH6dODNSFYzZAjQXhXhAVlxqKIQB85CsmJW6EBLYBXmS0o4xJqyUj8kFt6UsrTIr8vuLa2IYQwxzotuljWGDPtHaJWxpGGhZHIu3C07bxdN9DlmweDfhJf3m4kTVGwrv_pL-6qctHUPqp_4GqRtaOuDGHZM0x841SJutixtMR3AMfkGPzRTzZ8pY2I8ebzPaDzSN_eB8rsU2p7s5LjTi6Pr4lDzqnE_47BzX5MeH99-vPhXXXz9-vnp7XTQC-FQYyWxrLIKQTNRoAUBbpzoJtjFd2daldLUWToG1HWuxBq07hAYNa7jSFtbk1anvGMPPGdNU7fvUoPduwLyxSmkoQYO4lwgKSq2kuZdYcuCK5XdNXv5D3IU55nVkTsm50dYexvITKR8xpYhdNcZ-7-JScVYdPFKdPFJlj1QHj1QHzYtz47neY3unOJsiE8oTIWVo2GC8m_z_rn8A5o_KRA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hejcl, A</creator><creator>Lesný, P</creator><creator>Prádný, M</creator><creator>Sedý, J</creator><creator>Zámecník, J</creator><creator>Jendelová, P</creator><creator>Michálek, J</creator><creator>Syková, E</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair</title><author>Hejcl, A ; Lesný, P ; Prádný, M ; Sedý, J ; Zámecník, J ; Jendelová, P ; Michálek, J ; Syková, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-8509d89e34504be933379a6f539c8f2db25ab74a6399f0deb377fe3ce80c16793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biocompatible Materials - therapeutic use</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Hydrogels</topic><topic>Hydrogels - therapeutic use</topic><topic>Male</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Methacrylates - therapeutic use</topic><topic>Natural Materials</topic><topic>Nerve Regeneration</topic><topic>Nervous system</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Static Electricity</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thoracic Vertebrae - injuries</topic><topic>Thoracic Vertebrae - pathology</topic><topic>Tissue engineering</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hejcl, A</creatorcontrib><creatorcontrib>Lesný, P</creatorcontrib><creatorcontrib>Prádný, M</creatorcontrib><creatorcontrib>Sedý, J</creatorcontrib><creatorcontrib>Zámecník, J</creatorcontrib><creatorcontrib>Jendelová, P</creatorcontrib><creatorcontrib>Michálek, J</creatorcontrib><creatorcontrib>Syková, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hejcl, A</au><au>Lesný, P</au><au>Prádný, M</au><au>Sedý, J</au><au>Zámecník, J</au><au>Jendelová, P</au><au>Michálek, J</au><au>Syková, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>20</volume><issue>7</issue><spage>1571</spage><epage>1577</epage><pages>1571-1577</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>19252968</pmid><doi>10.1007/s10856-009-3714-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2009-07, Vol.20 (7), p.1571-1577
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_67323734
source MEDLINE; SpringerLink Journals
subjects Animals
Biocompatible Materials - therapeutic use
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Ceramics
Chemistry and Materials Science
Composites
Glass
Guided Tissue Regeneration - methods
Hydrogels
Hydrogels - therapeutic use
Male
Materials Science
Materials Testing
Methacrylates - therapeutic use
Natural Materials
Nerve Regeneration
Nervous system
Polymer Sciences
Porosity
Rats
Rats, Wistar
Regenerative Medicine/Tissue Engineering
Spinal Cord Injuries - pathology
Spinal Cord Injuries - therapy
Static Electricity
Surface Properties
Surfaces and Interfaces
Thin Films
Thoracic Vertebrae - injuries
Thoracic Vertebrae - pathology
Tissue engineering
Treatment Outcome
title Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroporous%20hydrogels%20based%20on%202-hydroxyethyl%20methacrylate.%20Part%206:%203D%20hydrogels%20with%20positive%20and%20negative%20surface%20charges%20and%20polyelectrolyte%20complexes%20in%20spinal%20cord%20injury%20repair&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Hejcl,%20A&rft.date=2009-07-01&rft.volume=20&rft.issue=7&rft.spage=1571&rft.epage=1577&rft.pages=1571-1577&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-009-3714-4&rft_dat=%3Cproquest_cross%3E36327658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221187994&rft_id=info:pmid/19252968&rfr_iscdi=true