A possible mechanism of repetitive firing of myelinated axon

A unique mechanism is proposed according to which processes within the internodal axolemma are responsible for repetitive activation of myelinated axon with deficit of internodal potassium conductance. A numerical simulation of activity in axon with 21 nodes was performed. The axon was represented b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2009-07, Vol.458 (3), p.547-561
1. Verfasser: Dimitrov, Alexander G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 3
container_start_page 547
container_title Pflügers Archiv
container_volume 458
creator Dimitrov, Alexander G.
description A unique mechanism is proposed according to which processes within the internodal axolemma are responsible for repetitive activation of myelinated axon with deficit of internodal potassium conductance. A numerical simulation of activity in axon with 21 nodes was performed. The axon was represented by cables for axoplasmic and periaxonal spaces. Accumulation and diffusion of ions were taken into account. Fine segmentation of each internode (338 segments) allowed simulation of internodal activation in response to a normal saltatorial action potential initiated by a short stimulus. The internodal membrane without potassium conductance experienced considerable depolarization. This resulted in formation of a transition zone and significant currents that caused repetitive activation of the internode and neighbor node. Decline of periaxonal sodium concentration during the spike production or lowering of sodium channel density decreased the sodium currents. As a result, the interspike intervals increased up to cessation of the burst. The cessation was reversible.
doi_str_mv 10.1007/s00424-009-0640-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67322993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67322993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-2e5bae856f1d7c299eed1936385447fefdfa8aba72f0c231c345671eb4733ae53</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBdZPHhbnXxssgteSvELCl70HLK7E03ZL5Ot2H9vSgsFwdPA8Mw7Mw8hlxRuKYC6CwCCiRSgSEEKSPMjMqWCs5QB5cdkCsBpKpXMJ-QshBUAMJGzUzKhBYNMMTkl9_Nk6ENwZYNJi9Wn6Vxok94mHgcc3ei-MbHOu-5j22w32LjOjFgn5qfvzsmJNU3Ai32dkffHh7fFc7p8fXpZzJdpxWUxpgyz0mCeSUtrVbGiQKxpwSXPMyGURVtbk5vSKGahYpxWXGRSUSyF4txgxmfkZpc7-P5rjWHUrQsVNo3psF8HLRVnMZZH8PoPuOrXvou3aRafV1IUNEJ0B1U-fu7R6sG71viNpqC3XvXOq45e9darzuPM1T54XbZYHyb2IiPAdkAYtrLQHzb_n_oL_eOBzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200276491</pqid></control><display><type>article</type><title>A possible mechanism of repetitive firing of myelinated axon</title><source>MEDLINE</source><source>Springer Journals</source><creator>Dimitrov, Alexander G.</creator><creatorcontrib>Dimitrov, Alexander G.</creatorcontrib><description>A unique mechanism is proposed according to which processes within the internodal axolemma are responsible for repetitive activation of myelinated axon with deficit of internodal potassium conductance. A numerical simulation of activity in axon with 21 nodes was performed. The axon was represented by cables for axoplasmic and periaxonal spaces. Accumulation and diffusion of ions were taken into account. Fine segmentation of each internode (338 segments) allowed simulation of internodal activation in response to a normal saltatorial action potential initiated by a short stimulus. The internodal membrane without potassium conductance experienced considerable depolarization. This resulted in formation of a transition zone and significant currents that caused repetitive activation of the internode and neighbor node. Decline of periaxonal sodium concentration during the spike production or lowering of sodium channel density decreased the sodium currents. As a result, the interspike intervals increased up to cessation of the burst. The cessation was reversible.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-009-0640-8</identifier><identifier>PMID: 19205726</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Action Potentials - physiology ; Animals ; Biological Clocks - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Computer Simulation ; Human Physiology ; Humans ; Models, Neurological ; Molecular Medicine ; Nerve Fibers, Myelinated - physiology ; Neuroscience ; Neurosciences ; Receptors ; Sodium</subject><ispartof>Pflügers Archiv, 2009-07, Vol.458 (3), p.547-561</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-2e5bae856f1d7c299eed1936385447fefdfa8aba72f0c231c345671eb4733ae53</citedby><cites>FETCH-LOGICAL-c369t-2e5bae856f1d7c299eed1936385447fefdfa8aba72f0c231c345671eb4733ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-009-0640-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-009-0640-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19205726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimitrov, Alexander G.</creatorcontrib><title>A possible mechanism of repetitive firing of myelinated axon</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>A unique mechanism is proposed according to which processes within the internodal axolemma are responsible for repetitive activation of myelinated axon with deficit of internodal potassium conductance. A numerical simulation of activity in axon with 21 nodes was performed. The axon was represented by cables for axoplasmic and periaxonal spaces. Accumulation and diffusion of ions were taken into account. Fine segmentation of each internode (338 segments) allowed simulation of internodal activation in response to a normal saltatorial action potential initiated by a short stimulus. The internodal membrane without potassium conductance experienced considerable depolarization. This resulted in formation of a transition zone and significant currents that caused repetitive activation of the internode and neighbor node. Decline of periaxonal sodium concentration during the spike production or lowering of sodium channel density decreased the sodium currents. As a result, the interspike intervals increased up to cessation of the burst. The cessation was reversible.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Molecular Medicine</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Receptors</subject><subject>Sodium</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBdZPHhbnXxssgteSvELCl70HLK7E03ZL5Ot2H9vSgsFwdPA8Mw7Mw8hlxRuKYC6CwCCiRSgSEEKSPMjMqWCs5QB5cdkCsBpKpXMJ-QshBUAMJGzUzKhBYNMMTkl9_Nk6ENwZYNJi9Wn6Vxok94mHgcc3ei-MbHOu-5j22w32LjOjFgn5qfvzsmJNU3Ai32dkffHh7fFc7p8fXpZzJdpxWUxpgyz0mCeSUtrVbGiQKxpwSXPMyGURVtbk5vSKGahYpxWXGRSUSyF4txgxmfkZpc7-P5rjWHUrQsVNo3psF8HLRVnMZZH8PoPuOrXvou3aRafV1IUNEJ0B1U-fu7R6sG71viNpqC3XvXOq45e9darzuPM1T54XbZYHyb2IiPAdkAYtrLQHzb_n_oL_eOBzg</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dimitrov, Alexander G.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>A possible mechanism of repetitive firing of myelinated axon</title><author>Dimitrov, Alexander G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-2e5bae856f1d7c299eed1936385447fefdfa8aba72f0c231c345671eb4733ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Molecular Medicine</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Receptors</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrov, Alexander G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimitrov, Alexander G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A possible mechanism of repetitive firing of myelinated axon</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>458</volume><issue>3</issue><spage>547</spage><epage>561</epage><pages>547-561</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>A unique mechanism is proposed according to which processes within the internodal axolemma are responsible for repetitive activation of myelinated axon with deficit of internodal potassium conductance. A numerical simulation of activity in axon with 21 nodes was performed. The axon was represented by cables for axoplasmic and periaxonal spaces. Accumulation and diffusion of ions were taken into account. Fine segmentation of each internode (338 segments) allowed simulation of internodal activation in response to a normal saltatorial action potential initiated by a short stimulus. The internodal membrane without potassium conductance experienced considerable depolarization. This resulted in formation of a transition zone and significant currents that caused repetitive activation of the internode and neighbor node. Decline of periaxonal sodium concentration during the spike production or lowering of sodium channel density decreased the sodium currents. As a result, the interspike intervals increased up to cessation of the burst. The cessation was reversible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19205726</pmid><doi>10.1007/s00424-009-0640-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2009-07, Vol.458 (3), p.547-561
issn 0031-6768
1432-2013
language eng
recordid cdi_proquest_miscellaneous_67322993
source MEDLINE; Springer Journals
subjects Action Potentials - physiology
Animals
Biological Clocks - physiology
Biomedical and Life Sciences
Biomedicine
Cell Biology
Computer Simulation
Human Physiology
Humans
Models, Neurological
Molecular Medicine
Nerve Fibers, Myelinated - physiology
Neuroscience
Neurosciences
Receptors
Sodium
title A possible mechanism of repetitive firing of myelinated axon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20possible%20mechanism%20of%20repetitive%20firing%20of%20myelinated%20axon&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Dimitrov,%20Alexander%20G.&rft.date=2009-07-01&rft.volume=458&rft.issue=3&rft.spage=547&rft.epage=561&rft.pages=547-561&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-009-0640-8&rft_dat=%3Cproquest_cross%3E67322993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200276491&rft_id=info:pmid/19205726&rfr_iscdi=true