Regional, cellular, and subcellular localization of RGS10 in rodent brain

The regulator of G protein signaling type 10 (RGS10) modulates Gαi/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2005-01, Vol.481 (3), p.299-313
Hauptverfasser: Waugh, Jeff L., Lou, Angela C., Eisch, Amelia J., Monteggia, Lisa M., Muly, E. Chris, Gold, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 3
container_start_page 299
container_title Journal of comparative neurology (1911)
container_volume 481
creator Waugh, Jeff L.
Lou, Angela C.
Eisch, Amelia J.
Monteggia, Lisa M.
Muly, E. Chris
Gold, Stephen J.
description The regulator of G protein signaling type 10 (RGS10) modulates Gαi/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light microscopic (LM) and electron microscopic (EM) immunohistochemical techniques. The LM showed that RGS10‐like immunoreactivity (LIR) labels all cellular subcompartments of neurons and microglia, including their nuclei. There were several differences between RGS10‐LIR distributions in rat and mouse, the most striking of which were the far denser immunoreactivity in rat dentate gyrus and dorsal raphe. The EM analysis corroborated and extended our findings from LM. Thus, EM confirmed the presence of dense RGS10‐LIR in the euchromatin compartment of nuclei. The EM analysis also resolved dense staining on terminals at symmetric synapses onto pyramidal cell somata. Dual immunofluorescence showed that forebrain interneurons densely labeled with RGS10‐LIR partially colocalized with parvalbumin‐LIR. Dual‐labeling histochemistry in caudoputamen demonstrated that densely labeled striatal cells were biased to the indirect‐projecting output pathway. Dual‐labeling immunofluorescence also showed that densely labeled RGS10‐LIR cells in the dentate gyrus subgranular zone were not proliferating but that newly born cells could differentiate to express RGS10‐LIR. Taken together, these data support a role for RGS10 in diverse processes that include modulation of pre‐ and postsynaptic G‐protein signaling. Moreover, enrichment of RGS10 in transcriptionally active regions of the nucleus suggests an unforeseen role of RGS10 in modulating gene expression. J. Comp. Neurol. 481:299–313, 2005. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/cne.20372
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67322230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17554584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3922-d22ac1b25e3a509c6c2ab673b0c7afd5361c8520a81fc4025597fbf767b3c083</originalsourceid><addsrcrecordid>eNqFkE1PwjAYgBujEUQP_gHTk4kJg37QdT0agoBBTJBEb03XdWY6Nmy3KP56iwM9GU9N2ud98vYB4ByjHkaI9HVhegRRTg5AGyMRBiIK8SFo-zccCBHyFjhx7gUhJASNjkELMyYoDaM2mC7Mc1YWKu9CbfK8zpXtQlUk0NXx_gLmpVZ59qkqT8IyhYvxA0YwK6AtE1NUMLYqK07BUapyZ852Zwcsb0bL4SSY3Y-nw-tZoKkgJEgIURrHhBmqGBI61ETFIacx0lylCaMh1hEjSEU41QNE_KY8jVMe8phqFNEOuGy0a1u-1cZVcpW57aaqMGXtpFcRQij6F8ScsQGLBh68akBtS-esSeXaZitlNxIjue0rfV_53dezFztpHa9M8kvugnqg3wDvWW42f5vkcD7aK4NmInOV-fiZUPZ1-xfO5ON8LGe-yO3T3VxO6BdwWpHP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17554584</pqid></control><display><type>article</type><title>Regional, cellular, and subcellular localization of RGS10 in rodent brain</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Waugh, Jeff L. ; Lou, Angela C. ; Eisch, Amelia J. ; Monteggia, Lisa M. ; Muly, E. Chris ; Gold, Stephen J.</creator><creatorcontrib>Waugh, Jeff L. ; Lou, Angela C. ; Eisch, Amelia J. ; Monteggia, Lisa M. ; Muly, E. Chris ; Gold, Stephen J.</creatorcontrib><description>The regulator of G protein signaling type 10 (RGS10) modulates Gαi/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light microscopic (LM) and electron microscopic (EM) immunohistochemical techniques. The LM showed that RGS10‐like immunoreactivity (LIR) labels all cellular subcompartments of neurons and microglia, including their nuclei. There were several differences between RGS10‐LIR distributions in rat and mouse, the most striking of which were the far denser immunoreactivity in rat dentate gyrus and dorsal raphe. The EM analysis corroborated and extended our findings from LM. Thus, EM confirmed the presence of dense RGS10‐LIR in the euchromatin compartment of nuclei. The EM analysis also resolved dense staining on terminals at symmetric synapses onto pyramidal cell somata. Dual immunofluorescence showed that forebrain interneurons densely labeled with RGS10‐LIR partially colocalized with parvalbumin‐LIR. Dual‐labeling histochemistry in caudoputamen demonstrated that densely labeled striatal cells were biased to the indirect‐projecting output pathway. Dual‐labeling immunofluorescence also showed that densely labeled RGS10‐LIR cells in the dentate gyrus subgranular zone were not proliferating but that newly born cells could differentiate to express RGS10‐LIR. Taken together, these data support a role for RGS10 in diverse processes that include modulation of pre‐ and postsynaptic G‐protein signaling. Moreover, enrichment of RGS10 in transcriptionally active regions of the nucleus suggests an unforeseen role of RGS10 in modulating gene expression. J. Comp. Neurol. 481:299–313, 2005. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.20372</identifier><identifier>PMID: 15593368</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Brain - metabolism ; Brain - ultrastructure ; Cell Differentiation - physiology ; Cell Nucleus - metabolism ; Cell Nucleus - ultrastructure ; Dentate Gyrus - metabolism ; Dentate Gyrus - ultrastructure ; Gene Expression Regulation, Developmental - physiology ; GTP-Binding Proteins - metabolism ; hippocampus ; Immunohistochemistry ; localization ; Male ; Mice ; Mice, Inbred C57BL - anatomy &amp; histology ; Mice, Inbred C57BL - metabolism ; microglia ; Microglia - metabolism ; Microglia - ultrastructure ; Microscopy, Electron, Transmission ; Neurons - metabolism ; Neurons - ultrastructure ; nucleus ; parvalbumin ; Parvalbumins - metabolism ; Pyramidal Cells - metabolism ; Pyramidal Cells - ultrastructure ; Raphe Nuclei - metabolism ; Raphe Nuclei - ultrastructure ; Rats ; Rats, Sprague-Dawley - anatomy &amp; histology ; Rats, Sprague-Dawley - metabolism ; RGS Proteins - metabolism ; Rodentia ; serotonin ; Signal Transduction - physiology ; Species Specificity ; Stem Cells - metabolism ; Stem Cells - ultrastructure ; striatum ; Synapses - metabolism ; Synapses - ultrastructure</subject><ispartof>Journal of comparative neurology (1911), 2005-01, Vol.481 (3), p.299-313</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3922-d22ac1b25e3a509c6c2ab673b0c7afd5361c8520a81fc4025597fbf767b3c083</citedby><cites>FETCH-LOGICAL-c3922-d22ac1b25e3a509c6c2ab673b0c7afd5361c8520a81fc4025597fbf767b3c083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.20372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.20372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15593368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waugh, Jeff L.</creatorcontrib><creatorcontrib>Lou, Angela C.</creatorcontrib><creatorcontrib>Eisch, Amelia J.</creatorcontrib><creatorcontrib>Monteggia, Lisa M.</creatorcontrib><creatorcontrib>Muly, E. Chris</creatorcontrib><creatorcontrib>Gold, Stephen J.</creatorcontrib><title>Regional, cellular, and subcellular localization of RGS10 in rodent brain</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>The regulator of G protein signaling type 10 (RGS10) modulates Gαi/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light microscopic (LM) and electron microscopic (EM) immunohistochemical techniques. The LM showed that RGS10‐like immunoreactivity (LIR) labels all cellular subcompartments of neurons and microglia, including their nuclei. There were several differences between RGS10‐LIR distributions in rat and mouse, the most striking of which were the far denser immunoreactivity in rat dentate gyrus and dorsal raphe. The EM analysis corroborated and extended our findings from LM. Thus, EM confirmed the presence of dense RGS10‐LIR in the euchromatin compartment of nuclei. The EM analysis also resolved dense staining on terminals at symmetric synapses onto pyramidal cell somata. Dual immunofluorescence showed that forebrain interneurons densely labeled with RGS10‐LIR partially colocalized with parvalbumin‐LIR. Dual‐labeling histochemistry in caudoputamen demonstrated that densely labeled striatal cells were biased to the indirect‐projecting output pathway. Dual‐labeling immunofluorescence also showed that densely labeled RGS10‐LIR cells in the dentate gyrus subgranular zone were not proliferating but that newly born cells could differentiate to express RGS10‐LIR. Taken together, these data support a role for RGS10 in diverse processes that include modulation of pre‐ and postsynaptic G‐protein signaling. Moreover, enrichment of RGS10 in transcriptionally active regions of the nucleus suggests an unforeseen role of RGS10 in modulating gene expression. J. Comp. Neurol. 481:299–313, 2005. © 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - ultrastructure</subject><subject>Dentate Gyrus - metabolism</subject><subject>Dentate Gyrus - ultrastructure</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>hippocampus</subject><subject>Immunohistochemistry</subject><subject>localization</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL - anatomy &amp; histology</subject><subject>Mice, Inbred C57BL - metabolism</subject><subject>microglia</subject><subject>Microglia - metabolism</subject><subject>Microglia - ultrastructure</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>nucleus</subject><subject>parvalbumin</subject><subject>Parvalbumins - metabolism</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - ultrastructure</subject><subject>Raphe Nuclei - metabolism</subject><subject>Raphe Nuclei - ultrastructure</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley - anatomy &amp; histology</subject><subject>Rats, Sprague-Dawley - metabolism</subject><subject>RGS Proteins - metabolism</subject><subject>Rodentia</subject><subject>serotonin</subject><subject>Signal Transduction - physiology</subject><subject>Species Specificity</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - ultrastructure</subject><subject>striatum</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwjAYgBujEUQP_gHTk4kJg37QdT0agoBBTJBEb03XdWY6Nmy3KP56iwM9GU9N2ud98vYB4ByjHkaI9HVhegRRTg5AGyMRBiIK8SFo-zccCBHyFjhx7gUhJASNjkELMyYoDaM2mC7Mc1YWKu9CbfK8zpXtQlUk0NXx_gLmpVZ59qkqT8IyhYvxA0YwK6AtE1NUMLYqK07BUapyZ852Zwcsb0bL4SSY3Y-nw-tZoKkgJEgIURrHhBmqGBI61ETFIacx0lylCaMh1hEjSEU41QNE_KY8jVMe8phqFNEOuGy0a1u-1cZVcpW57aaqMGXtpFcRQij6F8ScsQGLBh68akBtS-esSeXaZitlNxIjue0rfV_53dezFztpHa9M8kvugnqg3wDvWW42f5vkcD7aK4NmInOV-fiZUPZ1-xfO5ON8LGe-yO3T3VxO6BdwWpHP</recordid><startdate>20050117</startdate><enddate>20050117</enddate><creator>Waugh, Jeff L.</creator><creator>Lou, Angela C.</creator><creator>Eisch, Amelia J.</creator><creator>Monteggia, Lisa M.</creator><creator>Muly, E. Chris</creator><creator>Gold, Stephen J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20050117</creationdate><title>Regional, cellular, and subcellular localization of RGS10 in rodent brain</title><author>Waugh, Jeff L. ; Lou, Angela C. ; Eisch, Amelia J. ; Monteggia, Lisa M. ; Muly, E. Chris ; Gold, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3922-d22ac1b25e3a509c6c2ab673b0c7afd5361c8520a81fc4025597fbf767b3c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - ultrastructure</topic><topic>Dentate Gyrus - metabolism</topic><topic>Dentate Gyrus - ultrastructure</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>hippocampus</topic><topic>Immunohistochemistry</topic><topic>localization</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL - anatomy &amp; histology</topic><topic>Mice, Inbred C57BL - metabolism</topic><topic>microglia</topic><topic>Microglia - metabolism</topic><topic>Microglia - ultrastructure</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>nucleus</topic><topic>parvalbumin</topic><topic>Parvalbumins - metabolism</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - ultrastructure</topic><topic>Raphe Nuclei - metabolism</topic><topic>Raphe Nuclei - ultrastructure</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley - anatomy &amp; histology</topic><topic>Rats, Sprague-Dawley - metabolism</topic><topic>RGS Proteins - metabolism</topic><topic>Rodentia</topic><topic>serotonin</topic><topic>Signal Transduction - physiology</topic><topic>Species Specificity</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - ultrastructure</topic><topic>striatum</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waugh, Jeff L.</creatorcontrib><creatorcontrib>Lou, Angela C.</creatorcontrib><creatorcontrib>Eisch, Amelia J.</creatorcontrib><creatorcontrib>Monteggia, Lisa M.</creatorcontrib><creatorcontrib>Muly, E. Chris</creatorcontrib><creatorcontrib>Gold, Stephen J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waugh, Jeff L.</au><au>Lou, Angela C.</au><au>Eisch, Amelia J.</au><au>Monteggia, Lisa M.</au><au>Muly, E. Chris</au><au>Gold, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional, cellular, and subcellular localization of RGS10 in rodent brain</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2005-01-17</date><risdate>2005</risdate><volume>481</volume><issue>3</issue><spage>299</spage><epage>313</epage><pages>299-313</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The regulator of G protein signaling type 10 (RGS10) modulates Gαi/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light microscopic (LM) and electron microscopic (EM) immunohistochemical techniques. The LM showed that RGS10‐like immunoreactivity (LIR) labels all cellular subcompartments of neurons and microglia, including their nuclei. There were several differences between RGS10‐LIR distributions in rat and mouse, the most striking of which were the far denser immunoreactivity in rat dentate gyrus and dorsal raphe. The EM analysis corroborated and extended our findings from LM. Thus, EM confirmed the presence of dense RGS10‐LIR in the euchromatin compartment of nuclei. The EM analysis also resolved dense staining on terminals at symmetric synapses onto pyramidal cell somata. Dual immunofluorescence showed that forebrain interneurons densely labeled with RGS10‐LIR partially colocalized with parvalbumin‐LIR. Dual‐labeling histochemistry in caudoputamen demonstrated that densely labeled striatal cells were biased to the indirect‐projecting output pathway. Dual‐labeling immunofluorescence also showed that densely labeled RGS10‐LIR cells in the dentate gyrus subgranular zone were not proliferating but that newly born cells could differentiate to express RGS10‐LIR. Taken together, these data support a role for RGS10 in diverse processes that include modulation of pre‐ and postsynaptic G‐protein signaling. Moreover, enrichment of RGS10 in transcriptionally active regions of the nucleus suggests an unforeseen role of RGS10 in modulating gene expression. J. Comp. Neurol. 481:299–313, 2005. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15593368</pmid><doi>10.1002/cne.20372</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2005-01, Vol.481 (3), p.299-313
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_67322230
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Brain - metabolism
Brain - ultrastructure
Cell Differentiation - physiology
Cell Nucleus - metabolism
Cell Nucleus - ultrastructure
Dentate Gyrus - metabolism
Dentate Gyrus - ultrastructure
Gene Expression Regulation, Developmental - physiology
GTP-Binding Proteins - metabolism
hippocampus
Immunohistochemistry
localization
Male
Mice
Mice, Inbred C57BL - anatomy & histology
Mice, Inbred C57BL - metabolism
microglia
Microglia - metabolism
Microglia - ultrastructure
Microscopy, Electron, Transmission
Neurons - metabolism
Neurons - ultrastructure
nucleus
parvalbumin
Parvalbumins - metabolism
Pyramidal Cells - metabolism
Pyramidal Cells - ultrastructure
Raphe Nuclei - metabolism
Raphe Nuclei - ultrastructure
Rats
Rats, Sprague-Dawley - anatomy & histology
Rats, Sprague-Dawley - metabolism
RGS Proteins - metabolism
Rodentia
serotonin
Signal Transduction - physiology
Species Specificity
Stem Cells - metabolism
Stem Cells - ultrastructure
striatum
Synapses - metabolism
Synapses - ultrastructure
title Regional, cellular, and subcellular localization of RGS10 in rodent brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional,%20cellular,%20and%20subcellular%20localization%20of%20RGS10%20in%20rodent%20brain&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Waugh,%20Jeff%20L.&rft.date=2005-01-17&rft.volume=481&rft.issue=3&rft.spage=299&rft.epage=313&rft.pages=299-313&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.20372&rft_dat=%3Cproquest_cross%3E17554584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17554584&rft_id=info:pmid/15593368&rfr_iscdi=true