A stimulus-dependent connectivity analysis of neuronal networks

We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2009-08, Vol.59 (2), p.147-173
1. Verfasser: Nykamp, Duane Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 2
container_start_page 147
container_title Journal of mathematical biology
container_volume 59
creator Nykamp, Duane Q.
description We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.
doi_str_mv 10.1007/s00285-008-0224-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67321687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67321687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouq7-AC9SPHiLziRtPk4i4hcIXvQcsu1Uqt12TVpl_71ZdkERxFMS8sw7M-_L2BHCGQLo8wggTMEBDAchcm632ARzKTjmqLbZBCRIrgyKPbYf4ysA6sLiLttDYyQUtpiwi8ssDs18bMfIK1pQV1E3ZGXfdVQOzUczLDPf-XYZm5j1ddbRGPr0Tpfhsw9v8YDt1L6NdLg5p-z55vrp6o4_PN7eX10-8DIHGLi0Spe5KHKjagFQk1CeqKRS1SB1ZTzldS4s-LSX0ZUnA0YZO6sqqo1BL6fsdK27CP37SHFw8yaW1La-o36MTmkpUBn9LyhQSInJpSk7-QW-9mNIu0WH1lrUWosE4RoqQx9joNotQjP3YekQ3CoDt87ApbHdKgNnU83xRniczan6rtiYngCxBmL66l4o_Oj8p-oXwjeRCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199917772</pqid></control><display><type>article</type><title>A stimulus-dependent connectivity analysis of neuronal networks</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nykamp, Duane Q.</creator><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><description>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-008-0224-9</identifier><identifier>PMID: 18830595</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Action Potentials - physiology ; Algorithms ; Animals ; Applications of Mathematics ; Computer Simulation ; Humans ; Likelihood Functions ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Photic Stimulation ; ROC Curve</subject><ispartof>Journal of mathematical biology, 2009-08, Vol.59 (2), p.147-173</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</citedby><cites>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-008-0224-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-008-0224-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18830595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><title>A stimulus-dependent connectivity analysis of neuronal networks</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation</subject><subject>ROC Curve</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMouq7-AC9SPHiLziRtPk4i4hcIXvQcsu1Uqt12TVpl_71ZdkERxFMS8sw7M-_L2BHCGQLo8wggTMEBDAchcm632ARzKTjmqLbZBCRIrgyKPbYf4ysA6sLiLttDYyQUtpiwi8ssDs18bMfIK1pQV1E3ZGXfdVQOzUczLDPf-XYZm5j1ddbRGPr0Tpfhsw9v8YDt1L6NdLg5p-z55vrp6o4_PN7eX10-8DIHGLi0Spe5KHKjagFQk1CeqKRS1SB1ZTzldS4s-LSX0ZUnA0YZO6sqqo1BL6fsdK27CP37SHFw8yaW1La-o36MTmkpUBn9LyhQSInJpSk7-QW-9mNIu0WH1lrUWosE4RoqQx9joNotQjP3YekQ3CoDt87ApbHdKgNnU83xRniczan6rtiYngCxBmL66l4o_Oj8p-oXwjeRCQ</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Nykamp, Duane Q.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>A stimulus-dependent connectivity analysis of neuronal networks</title><author>Nykamp, Duane Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nykamp, Duane Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stimulus-dependent connectivity analysis of neuronal networks</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>59</volume><issue>2</issue><spage>147</spage><epage>173</epage><pages>147-173</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18830595</pmid><doi>10.1007/s00285-008-0224-9</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2009-08, Vol.59 (2), p.147-173
issn 0303-6812
1432-1416
language eng
recordid cdi_proquest_miscellaneous_67321687
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Action Potentials - physiology
Algorithms
Animals
Applications of Mathematics
Computer Simulation
Humans
Likelihood Functions
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Models, Neurological
Nerve Net - physiology
Neurons - physiology
Photic Stimulation
ROC Curve
title A stimulus-dependent connectivity analysis of neuronal networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stimulus-dependent%20connectivity%20analysis%20of%20neuronal%20networks&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Nykamp,%20Duane%20Q.&rft.date=2009-08-01&rft.volume=59&rft.issue=2&rft.spage=147&rft.epage=173&rft.pages=147-173&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-008-0224-9&rft_dat=%3Cproquest_cross%3E67321687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199917772&rft_id=info:pmid/18830595&rfr_iscdi=true