A stimulus-dependent connectivity analysis of neuronal networks
We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2009-08, Vol.59 (2), p.147-173 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Journal of mathematical biology |
container_volume | 59 |
creator | Nykamp, Duane Q. |
description | We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus. |
doi_str_mv | 10.1007/s00285-008-0224-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67321687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67321687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouq7-AC9SPHiLziRtPk4i4hcIXvQcsu1Uqt12TVpl_71ZdkERxFMS8sw7M-_L2BHCGQLo8wggTMEBDAchcm632ARzKTjmqLbZBCRIrgyKPbYf4ysA6sLiLttDYyQUtpiwi8ssDs18bMfIK1pQV1E3ZGXfdVQOzUczLDPf-XYZm5j1ddbRGPr0Tpfhsw9v8YDt1L6NdLg5p-z55vrp6o4_PN7eX10-8DIHGLi0Spe5KHKjagFQk1CeqKRS1SB1ZTzldS4s-LSX0ZUnA0YZO6sqqo1BL6fsdK27CP37SHFw8yaW1La-o36MTmkpUBn9LyhQSInJpSk7-QW-9mNIu0WH1lrUWosE4RoqQx9joNotQjP3YekQ3CoDt87ApbHdKgNnU83xRniczan6rtiYngCxBmL66l4o_Oj8p-oXwjeRCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199917772</pqid></control><display><type>article</type><title>A stimulus-dependent connectivity analysis of neuronal networks</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nykamp, Duane Q.</creator><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><description>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-008-0224-9</identifier><identifier>PMID: 18830595</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Action Potentials - physiology ; Algorithms ; Animals ; Applications of Mathematics ; Computer Simulation ; Humans ; Likelihood Functions ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Photic Stimulation ; ROC Curve</subject><ispartof>Journal of mathematical biology, 2009-08, Vol.59 (2), p.147-173</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</citedby><cites>FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-008-0224-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-008-0224-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18830595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><title>A stimulus-dependent connectivity analysis of neuronal networks</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation</subject><subject>ROC Curve</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMouq7-AC9SPHiLziRtPk4i4hcIXvQcsu1Uqt12TVpl_71ZdkERxFMS8sw7M-_L2BHCGQLo8wggTMEBDAchcm632ARzKTjmqLbZBCRIrgyKPbYf4ysA6sLiLttDYyQUtpiwi8ssDs18bMfIK1pQV1E3ZGXfdVQOzUczLDPf-XYZm5j1ddbRGPr0Tpfhsw9v8YDt1L6NdLg5p-z55vrp6o4_PN7eX10-8DIHGLi0Spe5KHKjagFQk1CeqKRS1SB1ZTzldS4s-LSX0ZUnA0YZO6sqqo1BL6fsdK27CP37SHFw8yaW1La-o36MTmkpUBn9LyhQSInJpSk7-QW-9mNIu0WH1lrUWosE4RoqQx9joNotQjP3YekQ3CoDt87ApbHdKgNnU83xRniczan6rtiYngCxBmL66l4o_Oj8p-oXwjeRCQ</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Nykamp, Duane Q.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>A stimulus-dependent connectivity analysis of neuronal networks</title><author>Nykamp, Duane Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3967c425486f200fe26aeecec6f037d8ae4f4290a10087dae808689bddef881a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nykamp, Duane Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nykamp, Duane Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stimulus-dependent connectivity analysis of neuronal networks</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>59</volume><issue>2</issue><spage>147</spage><epage>173</epage><pages>147-173</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18830595</pmid><doi>10.1007/s00285-008-0224-9</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2009-08, Vol.59 (2), p.147-173 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_67321687 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Action Potentials - physiology Algorithms Animals Applications of Mathematics Computer Simulation Humans Likelihood Functions Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Neurological Nerve Net - physiology Neurons - physiology Photic Stimulation ROC Curve |
title | A stimulus-dependent connectivity analysis of neuronal networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stimulus-dependent%20connectivity%20analysis%20of%20neuronal%20networks&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Nykamp,%20Duane%20Q.&rft.date=2009-08-01&rft.volume=59&rft.issue=2&rft.spage=147&rft.epage=173&rft.pages=147-173&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-008-0224-9&rft_dat=%3Cproquest_cross%3E67321687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199917772&rft_id=info:pmid/18830595&rfr_iscdi=true |