Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms

While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2009-06, Vol.238 (6), p.1226-1248
Hauptverfasser: Beck, Caroline W., Izpisúa Belmonte, Juan Carlos, Christen, Bea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue 6
container_start_page 1226
container_title Developmental dynamics
container_volume 238
creator Beck, Caroline W.
Izpisúa Belmonte, Juan Carlos
Christen, Bea
description While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/dvdy.21890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67313691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21073893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMovi_-AMnJg9B1knTz8OZbYcGLip5Ctp2ulbZZk3al_96uu-BNYWBm4OM7fIQcMRgxAH6WL_J-xJk2sEF2GRiVAFNqc3mPdaKF1jtkL8YPANAyZdtkhxmuQYLcJfYSe9_kFF2oeprjAis_r7Fpz-krNn7eReqGaSjWGGZlM6O1z7GihQ-0fUca2y7vqS9owBk2GFxbLpDWmL27pox1PCBbhasiHq73Pnm-vXm6uk8mj3cPVxeTJEslQKIR04wZI0ABM4pncsrHxmjFh7eQBqVgaWZSzvKsEEa41BTTcaGc0lOpeSr2ycnKOw_-s8PY2rqMGVaVa9B30UolmJCG_QtyBkpoIwbwdAVmwccYsLDzUNYu9JaBXXa3y-72p_sAH6-t3bTG_Bddhx4AtgK-ygr7P1T2-uX6bSX9BrtojSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21073893</pqid></control><display><type>article</type><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</creator><creatorcontrib>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</creatorcontrib><description>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.21890</identifier><identifier>PMID: 19280606</identifier><language>eng</language><publisher>New York: Wiley‐Liss, Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Anura ; blastema ; epimorphic ; Epistasis, Genetic ; Extremities - anatomy &amp; histology ; Extremities - physiology ; Freshwater ; Hsp70 ; lens ; Lens, Crystalline - physiology ; limb ; Metamorphosis, Biological ; Microarray Analysis ; regeneration ; Regeneration - genetics ; Regeneration - physiology ; Signal Transduction - physiology ; tail ; Tail - anatomy &amp; histology ; Tail - physiology ; transcriptome ; transdifferentiation ; Xenopus ; Xenopus laevis ; Xenopus laevis - anatomy &amp; histology ; Xenopus laevis - embryology ; Xenopus laevis - physiology</subject><ispartof>Developmental dynamics, 2009-06, Vol.238 (6), p.1226-1248</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</citedby><cites>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.21890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.21890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19280606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beck, Caroline W.</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Christen, Bea</creatorcontrib><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Anura</subject><subject>blastema</subject><subject>epimorphic</subject><subject>Epistasis, Genetic</subject><subject>Extremities - anatomy &amp; histology</subject><subject>Extremities - physiology</subject><subject>Freshwater</subject><subject>Hsp70</subject><subject>lens</subject><subject>Lens, Crystalline - physiology</subject><subject>limb</subject><subject>Metamorphosis, Biological</subject><subject>Microarray Analysis</subject><subject>regeneration</subject><subject>Regeneration - genetics</subject><subject>Regeneration - physiology</subject><subject>Signal Transduction - physiology</subject><subject>tail</subject><subject>Tail - anatomy &amp; histology</subject><subject>Tail - physiology</subject><subject>transcriptome</subject><subject>transdifferentiation</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - anatomy &amp; histology</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - physiology</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAQgIMovi_-AMnJg9B1knTz8OZbYcGLip5Ctp2ulbZZk3al_96uu-BNYWBm4OM7fIQcMRgxAH6WL_J-xJk2sEF2GRiVAFNqc3mPdaKF1jtkL8YPANAyZdtkhxmuQYLcJfYSe9_kFF2oeprjAis_r7Fpz-krNn7eReqGaSjWGGZlM6O1z7GihQ-0fUca2y7vqS9owBk2GFxbLpDWmL27pox1PCBbhasiHq73Pnm-vXm6uk8mj3cPVxeTJEslQKIR04wZI0ABM4pncsrHxmjFh7eQBqVgaWZSzvKsEEa41BTTcaGc0lOpeSr2ycnKOw_-s8PY2rqMGVaVa9B30UolmJCG_QtyBkpoIwbwdAVmwccYsLDzUNYu9JaBXXa3y-72p_sAH6-t3bTG_Bddhx4AtgK-ygr7P1T2-uX6bSX9BrtojSc</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Beck, Caroline W.</creator><creator>Izpisúa Belmonte, Juan Carlos</creator><creator>Christen, Bea</creator><general>Wiley‐Liss, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200906</creationdate><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><author>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Anura</topic><topic>blastema</topic><topic>epimorphic</topic><topic>Epistasis, Genetic</topic><topic>Extremities - anatomy &amp; histology</topic><topic>Extremities - physiology</topic><topic>Freshwater</topic><topic>Hsp70</topic><topic>lens</topic><topic>Lens, Crystalline - physiology</topic><topic>limb</topic><topic>Metamorphosis, Biological</topic><topic>Microarray Analysis</topic><topic>regeneration</topic><topic>Regeneration - genetics</topic><topic>Regeneration - physiology</topic><topic>Signal Transduction - physiology</topic><topic>tail</topic><topic>Tail - anatomy &amp; histology</topic><topic>Tail - physiology</topic><topic>transcriptome</topic><topic>transdifferentiation</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - anatomy &amp; histology</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beck, Caroline W.</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Christen, Bea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beck, Caroline W.</au><au>Izpisúa Belmonte, Juan Carlos</au><au>Christen, Bea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2009-06</date><risdate>2009</risdate><volume>238</volume><issue>6</issue><spage>1226</spage><epage>1248</epage><pages>1226-1248</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley‐Liss, Inc</pub><pmid>19280606</pmid><doi>10.1002/dvdy.21890</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-8388
ispartof Developmental dynamics, 2009-06, Vol.238 (6), p.1226-1248
issn 1058-8388
1097-0177
language eng
recordid cdi_proquest_miscellaneous_67313691
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Animals, Genetically Modified
Anura
blastema
epimorphic
Epistasis, Genetic
Extremities - anatomy & histology
Extremities - physiology
Freshwater
Hsp70
lens
Lens, Crystalline - physiology
limb
Metamorphosis, Biological
Microarray Analysis
regeneration
Regeneration - genetics
Regeneration - physiology
Signal Transduction - physiology
tail
Tail - anatomy & histology
Tail - physiology
transcriptome
transdifferentiation
Xenopus
Xenopus laevis
Xenopus laevis - anatomy & histology
Xenopus laevis - embryology
Xenopus laevis - physiology
title Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20early%20development:%20Xenopus%20as%20an%20emerging%20model%20for%20the%20study%20of%20regenerative%20mechanisms&rft.jtitle=Developmental%20dynamics&rft.au=Beck,%20Caroline%20W.&rft.date=2009-06&rft.volume=238&rft.issue=6&rft.spage=1226&rft.epage=1248&rft.pages=1226-1248&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.21890&rft_dat=%3Cproquest_cross%3E21073893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21073893&rft_id=info:pmid/19280606&rfr_iscdi=true