Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms
While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the le...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2009-06, Vol.238 (6), p.1226-1248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1248 |
---|---|
container_issue | 6 |
container_start_page | 1226 |
container_title | Developmental dynamics |
container_volume | 238 |
creator | Beck, Caroline W. Izpisúa Belmonte, Juan Carlos Christen, Bea |
description | While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/dvdy.21890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67313691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21073893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMovi_-AMnJg9B1knTz8OZbYcGLip5Ctp2ulbZZk3al_96uu-BNYWBm4OM7fIQcMRgxAH6WL_J-xJk2sEF2GRiVAFNqc3mPdaKF1jtkL8YPANAyZdtkhxmuQYLcJfYSe9_kFF2oeprjAis_r7Fpz-krNn7eReqGaSjWGGZlM6O1z7GihQ-0fUca2y7vqS9owBk2GFxbLpDWmL27pox1PCBbhasiHq73Pnm-vXm6uk8mj3cPVxeTJEslQKIR04wZI0ABM4pncsrHxmjFh7eQBqVgaWZSzvKsEEa41BTTcaGc0lOpeSr2ycnKOw_-s8PY2rqMGVaVa9B30UolmJCG_QtyBkpoIwbwdAVmwccYsLDzUNYu9JaBXXa3y-72p_sAH6-t3bTG_Bddhx4AtgK-ygr7P1T2-uX6bSX9BrtojSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21073893</pqid></control><display><type>article</type><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</creator><creatorcontrib>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</creatorcontrib><description>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.21890</identifier><identifier>PMID: 19280606</identifier><language>eng</language><publisher>New York: Wiley‐Liss, Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Anura ; blastema ; epimorphic ; Epistasis, Genetic ; Extremities - anatomy & histology ; Extremities - physiology ; Freshwater ; Hsp70 ; lens ; Lens, Crystalline - physiology ; limb ; Metamorphosis, Biological ; Microarray Analysis ; regeneration ; Regeneration - genetics ; Regeneration - physiology ; Signal Transduction - physiology ; tail ; Tail - anatomy & histology ; Tail - physiology ; transcriptome ; transdifferentiation ; Xenopus ; Xenopus laevis ; Xenopus laevis - anatomy & histology ; Xenopus laevis - embryology ; Xenopus laevis - physiology</subject><ispartof>Developmental dynamics, 2009-06, Vol.238 (6), p.1226-1248</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</citedby><cites>FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.21890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.21890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19280606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beck, Caroline W.</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Christen, Bea</creatorcontrib><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Anura</subject><subject>blastema</subject><subject>epimorphic</subject><subject>Epistasis, Genetic</subject><subject>Extremities - anatomy & histology</subject><subject>Extremities - physiology</subject><subject>Freshwater</subject><subject>Hsp70</subject><subject>lens</subject><subject>Lens, Crystalline - physiology</subject><subject>limb</subject><subject>Metamorphosis, Biological</subject><subject>Microarray Analysis</subject><subject>regeneration</subject><subject>Regeneration - genetics</subject><subject>Regeneration - physiology</subject><subject>Signal Transduction - physiology</subject><subject>tail</subject><subject>Tail - anatomy & histology</subject><subject>Tail - physiology</subject><subject>transcriptome</subject><subject>transdifferentiation</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - anatomy & histology</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - physiology</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAQgIMovi_-AMnJg9B1knTz8OZbYcGLip5Ctp2ulbZZk3al_96uu-BNYWBm4OM7fIQcMRgxAH6WL_J-xJk2sEF2GRiVAFNqc3mPdaKF1jtkL8YPANAyZdtkhxmuQYLcJfYSe9_kFF2oeprjAis_r7Fpz-krNn7eReqGaSjWGGZlM6O1z7GihQ-0fUca2y7vqS9owBk2GFxbLpDWmL27pox1PCBbhasiHq73Pnm-vXm6uk8mj3cPVxeTJEslQKIR04wZI0ABM4pncsrHxmjFh7eQBqVgaWZSzvKsEEa41BTTcaGc0lOpeSr2ycnKOw_-s8PY2rqMGVaVa9B30UolmJCG_QtyBkpoIwbwdAVmwccYsLDzUNYu9JaBXXa3y-72p_sAH6-t3bTG_Bddhx4AtgK-ygr7P1T2-uX6bSX9BrtojSc</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Beck, Caroline W.</creator><creator>Izpisúa Belmonte, Juan Carlos</creator><creator>Christen, Bea</creator><general>Wiley‐Liss, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200906</creationdate><title>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</title><author>Beck, Caroline W. ; Izpisúa Belmonte, Juan Carlos ; Christen, Bea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4600-8ee4c19930701972c6b2599872019f69e6314c9421dcf393a49fb5f7a78b68243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Anura</topic><topic>blastema</topic><topic>epimorphic</topic><topic>Epistasis, Genetic</topic><topic>Extremities - anatomy & histology</topic><topic>Extremities - physiology</topic><topic>Freshwater</topic><topic>Hsp70</topic><topic>lens</topic><topic>Lens, Crystalline - physiology</topic><topic>limb</topic><topic>Metamorphosis, Biological</topic><topic>Microarray Analysis</topic><topic>regeneration</topic><topic>Regeneration - genetics</topic><topic>Regeneration - physiology</topic><topic>Signal Transduction - physiology</topic><topic>tail</topic><topic>Tail - anatomy & histology</topic><topic>Tail - physiology</topic><topic>transcriptome</topic><topic>transdifferentiation</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - anatomy & histology</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beck, Caroline W.</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Christen, Bea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beck, Caroline W.</au><au>Izpisúa Belmonte, Juan Carlos</au><au>Christen, Bea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2009-06</date><risdate>2009</risdate><volume>238</volume><issue>6</issue><spage>1226</spage><epage>1248</epage><pages>1226-1248</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>While Xenopus is a well‐known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226–1248, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley‐Liss, Inc</pub><pmid>19280606</pmid><doi>10.1002/dvdy.21890</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-8388 |
ispartof | Developmental dynamics, 2009-06, Vol.238 (6), p.1226-1248 |
issn | 1058-8388 1097-0177 |
language | eng |
recordid | cdi_proquest_miscellaneous_67313691 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Animals, Genetically Modified Anura blastema epimorphic Epistasis, Genetic Extremities - anatomy & histology Extremities - physiology Freshwater Hsp70 lens Lens, Crystalline - physiology limb Metamorphosis, Biological Microarray Analysis regeneration Regeneration - genetics Regeneration - physiology Signal Transduction - physiology tail Tail - anatomy & histology Tail - physiology transcriptome transdifferentiation Xenopus Xenopus laevis Xenopus laevis - anatomy & histology Xenopus laevis - embryology Xenopus laevis - physiology |
title | Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20early%20development:%20Xenopus%20as%20an%20emerging%20model%20for%20the%20study%20of%20regenerative%20mechanisms&rft.jtitle=Developmental%20dynamics&rft.au=Beck,%20Caroline%20W.&rft.date=2009-06&rft.volume=238&rft.issue=6&rft.spage=1226&rft.epage=1248&rft.pages=1226-1248&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.21890&rft_dat=%3Cproquest_cross%3E21073893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21073893&rft_id=info:pmid/19280606&rfr_iscdi=true |