Persistence of structured populations in random environments
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for...
Gespeichert in:
Veröffentlicht in: | Theoretical population biology 2009-08, Vol.76 (1), p.19-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Theoretical population biology |
container_volume | 76 |
creator | Benaïm, Michel Schreiber, Sebastian J. |
description | Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space. |
doi_str_mv | 10.1016/j.tpb.2009.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67311023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580909000318</els_id><sourcerecordid>20619468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7410b7d26e168b36d33000036659585ba5e86a9cbf874f7c79c243851b089b263</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMozjj6AG6kK3etN02TJuhGBv9gQBe6Dm16Cxnapiap4NvbYQbc6epuzne4HEIuKWQUqLjZZnGssxxAZcAygPKILCkokQLL-TFZAhSQcglqQc5C2AKApIydkgVVjEsp6JLcvaEPNkQcDCauTUL0k4mTxyYZ3Th1VbRuCIkdEl8NjesTHL6sd0OPQwzn5KStuoAXh7siH48P7-vndPP69LK-36SmKGRMy4JCXTa5QCpkzUTD2PwKMCG44pLXFUcpKmXqVpZFW5pSmbxgktMapKpzwVbkeu8dvfucMETd22Cw66oB3RS0KBmlkLN_wRwEVYWQM0j3oPEuBI-tHr3tK_-tKehdW73Vc1u9a6uB6bntvLk6yKe6x-Z3cYg5A7d7AOcWXxa9DsbuwjbWo4m6cfYP_Q-ELojC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20619468</pqid></control><display><type>article</type><title>Persistence of structured populations in random environments</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Benaïm, Michel ; Schreiber, Sebastian J.</creator><creatorcontrib>Benaïm, Michel ; Schreiber, Sebastian J.</creatorcontrib><description>Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2009.03.007</identifier><identifier>PMID: 19358861</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Computer Simulation ; Conservation of Natural Resources ; Ecosystem ; Environment ; Markov Chains ; Metapopulation ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Persistence ; Plant Development ; Population Density ; Population Dynamics ; Population Growth ; Random environment ; Source-sink ; Stochastic Processes ; Structured populations</subject><ispartof>Theoretical population biology, 2009-08, Vol.76 (1), p.19-34</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7410b7d26e168b36d33000036659585ba5e86a9cbf874f7c79c243851b089b263</citedby><cites>FETCH-LOGICAL-c448t-7410b7d26e168b36d33000036659585ba5e86a9cbf874f7c79c243851b089b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tpb.2009.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19358861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benaïm, Michel</creatorcontrib><creatorcontrib>Schreiber, Sebastian J.</creatorcontrib><title>Persistence of structured populations in random environments</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Conservation of Natural Resources</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Markov Chains</subject><subject>Metapopulation</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Persistence</subject><subject>Plant Development</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Population Growth</subject><subject>Random environment</subject><subject>Source-sink</subject><subject>Stochastic Processes</subject><subject>Structured populations</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAURoMozjj6AG6kK3etN02TJuhGBv9gQBe6Dm16Cxnapiap4NvbYQbc6epuzne4HEIuKWQUqLjZZnGssxxAZcAygPKILCkokQLL-TFZAhSQcglqQc5C2AKApIydkgVVjEsp6JLcvaEPNkQcDCauTUL0k4mTxyYZ3Th1VbRuCIkdEl8NjesTHL6sd0OPQwzn5KStuoAXh7siH48P7-vndPP69LK-36SmKGRMy4JCXTa5QCpkzUTD2PwKMCG44pLXFUcpKmXqVpZFW5pSmbxgktMapKpzwVbkeu8dvfucMETd22Cw66oB3RS0KBmlkLN_wRwEVYWQM0j3oPEuBI-tHr3tK_-tKehdW73Vc1u9a6uB6bntvLk6yKe6x-Z3cYg5A7d7AOcWXxa9DsbuwjbWo4m6cfYP_Q-ELojC</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Benaïm, Michel</creator><creator>Schreiber, Sebastian J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Persistence of structured populations in random environments</title><author>Benaïm, Michel ; Schreiber, Sebastian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7410b7d26e168b36d33000036659585ba5e86a9cbf874f7c79c243851b089b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Conservation of Natural Resources</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Markov Chains</topic><topic>Metapopulation</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Persistence</topic><topic>Plant Development</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Population Growth</topic><topic>Random environment</topic><topic>Source-sink</topic><topic>Stochastic Processes</topic><topic>Structured populations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benaïm, Michel</creatorcontrib><creatorcontrib>Schreiber, Sebastian J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benaïm, Michel</au><au>Schreiber, Sebastian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence of structured populations in random environments</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>76</volume><issue>1</issue><spage>19</spage><epage>34</epage><pages>19-34</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19358861</pmid><doi>10.1016/j.tpb.2009.03.007</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5809 |
ispartof | Theoretical population biology, 2009-08, Vol.76 (1), p.19-34 |
issn | 0040-5809 1096-0325 |
language | eng |
recordid | cdi_proquest_miscellaneous_67311023 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Computer Simulation Conservation of Natural Resources Ecosystem Environment Markov Chains Metapopulation Models, Biological Models, Statistical Monte Carlo Method Persistence Plant Development Population Density Population Dynamics Population Growth Random environment Source-sink Stochastic Processes Structured populations |
title | Persistence of structured populations in random environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20of%20structured%20populations%20in%20random%20environments&rft.jtitle=Theoretical%20population%20biology&rft.au=Bena%C3%AFm,%20Michel&rft.date=2009-08-01&rft.volume=76&rft.issue=1&rft.spage=19&rft.epage=34&rft.pages=19-34&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2009.03.007&rft_dat=%3Cproquest_cross%3E20619468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20619468&rft_id=info:pmid/19358861&rft_els_id=S0040580909000318&rfr_iscdi=true |