Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning
Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however,...
Gespeichert in:
Veröffentlicht in: | Psychological science 2009-05, Vol.20 (5), p.578-585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 5 |
container_start_page | 578 |
container_title | Psychological science |
container_volume | 20 |
creator | Frank, Michael C. Goodman, Noah D. Tenenbaum, Joshua B. |
description | Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference. |
doi_str_mv | 10.1111/j.1467-9280.2009.02335.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67302748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40575067</jstor_id><sage_id>10.1111_j.1467-9280.2009.02335.x</sage_id><sourcerecordid>40575067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpaTZpf0KLoND0YmdkSZZ0LEuSBrYUki49Cq0sBTteayPZkPz7yN0lKT20c5FgvveGmYcQJlCSXGddSVgtClVJKCsAVUJFKS8fXqHFc-M1WoDidSGUqI_QcUod5BK0fouOiKJSEUoWaL1O7XCLb3bO3LmYTvG18y66YWxNj6-Gcf6FIeEx4O-hcT0-N7F_xMsYUipu2nEycz-zv0Js8MqZOGS_d-iNN31y7w_vCVpfnP9cfitWPy6vll9XhWVUjoXbNFxSZrkXG2kqz4RljBtOmPAVcd5KIA0HYxulfO0EU0qBspx4CpbLhp6gz3vfXQz3k0uj3rbJur43gwtT0rWgUAkmM_jlnyCRlEMlKwEZ_fQX2oUp5hUzpYDxWgLUmZJ7ys6XiM7rXWy3Jj5qAnrOSHd6jkLPUeg5I_07I_2QpR8PA6bN1jUvwkMoGeB7IJlb98f0_xt_2Ou6NIb47MuACw75FE9ax6YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904568006</pqid></control><display><type>article</type><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>EBSCO Business Source Complete</source><source>SAGE Journals</source><creator>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</creator><creatorcontrib>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</creatorcontrib><description>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</description><identifier>ISSN: 0956-7976</identifier><identifier>EISSN: 1467-9280</identifier><identifier>DOI: 10.1111/j.1467-9280.2009.02335.x</identifier><identifier>PMID: 19389131</identifier><language>eng</language><publisher>Los Angeles, CA: Wiley Periodicals</publisher><subject>Association Learning ; Child development ; Children ; Cognitive psychology ; Humans ; Identity formation ; Inference ; Intention ; Intentional learning ; Language acquisition ; Language Development ; Learning ; Linguistics ; Mathematical models ; Meaning ; Modeling ; Models, Psychological ; Models, Statistical ; Parametric models ; Pattern Recognition, Visual ; Probabilistic modeling ; Probabilities ; Referents ; Social Environment ; Speech Perception ; Syntax ; Toys ; Transfer (Psychology) ; Utterances ; Verbal Learning ; Vocabulary ; Vocabulary learning ; Word meaning ; Words</subject><ispartof>Psychological science, 2009-05, Vol.20 (5), p.578-585</ispartof><rights>2009 Association for Psychological Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</citedby><cites>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40575067$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40575067$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,21798,27901,27902,43597,43598,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Michael C.</creatorcontrib><creatorcontrib>Goodman, Noah D.</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><title>Psychological science</title><addtitle>Psychol Sci</addtitle><description>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</description><subject>Association Learning</subject><subject>Child development</subject><subject>Children</subject><subject>Cognitive psychology</subject><subject>Humans</subject><subject>Identity formation</subject><subject>Inference</subject><subject>Intention</subject><subject>Intentional learning</subject><subject>Language acquisition</subject><subject>Language Development</subject><subject>Learning</subject><subject>Linguistics</subject><subject>Mathematical models</subject><subject>Meaning</subject><subject>Modeling</subject><subject>Models, Psychological</subject><subject>Models, Statistical</subject><subject>Parametric models</subject><subject>Pattern Recognition, Visual</subject><subject>Probabilistic modeling</subject><subject>Probabilities</subject><subject>Referents</subject><subject>Social Environment</subject><subject>Speech Perception</subject><subject>Syntax</subject><subject>Toys</subject><subject>Transfer (Psychology)</subject><subject>Utterances</subject><subject>Verbal Learning</subject><subject>Vocabulary</subject><subject>Vocabulary learning</subject><subject>Word meaning</subject><subject>Words</subject><issn>0956-7976</issn><issn>1467-9280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpaTZpf0KLoND0YmdkSZZ0LEuSBrYUki49Cq0sBTteayPZkPz7yN0lKT20c5FgvveGmYcQJlCSXGddSVgtClVJKCsAVUJFKS8fXqHFc-M1WoDidSGUqI_QcUod5BK0fouOiKJSEUoWaL1O7XCLb3bO3LmYTvG18y66YWxNj6-Gcf6FIeEx4O-hcT0-N7F_xMsYUipu2nEycz-zv0Js8MqZOGS_d-iNN31y7w_vCVpfnP9cfitWPy6vll9XhWVUjoXbNFxSZrkXG2kqz4RljBtOmPAVcd5KIA0HYxulfO0EU0qBspx4CpbLhp6gz3vfXQz3k0uj3rbJur43gwtT0rWgUAkmM_jlnyCRlEMlKwEZ_fQX2oUp5hUzpYDxWgLUmZJ7ys6XiM7rXWy3Jj5qAnrOSHd6jkLPUeg5I_07I_2QpR8PA6bN1jUvwkMoGeB7IJlb98f0_xt_2Ou6NIb47MuACw75FE9ax6YA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Frank, Michael C.</creator><creator>Goodman, Noah D.</creator><creator>Tenenbaum, Joshua B.</creator><general>Wiley Periodicals</general><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><author>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Association Learning</topic><topic>Child development</topic><topic>Children</topic><topic>Cognitive psychology</topic><topic>Humans</topic><topic>Identity formation</topic><topic>Inference</topic><topic>Intention</topic><topic>Intentional learning</topic><topic>Language acquisition</topic><topic>Language Development</topic><topic>Learning</topic><topic>Linguistics</topic><topic>Mathematical models</topic><topic>Meaning</topic><topic>Modeling</topic><topic>Models, Psychological</topic><topic>Models, Statistical</topic><topic>Parametric models</topic><topic>Pattern Recognition, Visual</topic><topic>Probabilistic modeling</topic><topic>Probabilities</topic><topic>Referents</topic><topic>Social Environment</topic><topic>Speech Perception</topic><topic>Syntax</topic><topic>Toys</topic><topic>Transfer (Psychology)</topic><topic>Utterances</topic><topic>Verbal Learning</topic><topic>Vocabulary</topic><topic>Vocabulary learning</topic><topic>Word meaning</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Michael C.</creatorcontrib><creatorcontrib>Goodman, Noah D.</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Michael C.</au><au>Goodman, Noah D.</au><au>Tenenbaum, Joshua B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</atitle><jtitle>Psychological science</jtitle><addtitle>Psychol Sci</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>578</spage><epage>585</epage><pages>578-585</pages><issn>0956-7976</issn><eissn>1467-9280</eissn><abstract>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</abstract><cop>Los Angeles, CA</cop><pub>Wiley Periodicals</pub><pmid>19389131</pmid><doi>10.1111/j.1467-9280.2009.02335.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7976 |
ispartof | Psychological science, 2009-05, Vol.20 (5), p.578-585 |
issn | 0956-7976 1467-9280 |
language | eng |
recordid | cdi_proquest_miscellaneous_67302748 |
source | Jstor Complete Legacy; MEDLINE; EBSCO Business Source Complete; SAGE Journals |
subjects | Association Learning Child development Children Cognitive psychology Humans Identity formation Inference Intention Intentional learning Language acquisition Language Development Learning Linguistics Mathematical models Meaning Modeling Models, Psychological Models, Statistical Parametric models Pattern Recognition, Visual Probabilistic modeling Probabilities Referents Social Environment Speech Perception Syntax Toys Transfer (Psychology) Utterances Verbal Learning Vocabulary Vocabulary learning Word meaning Words |
title | Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Speakers'%20Referential%20Intentions%20to%20Model%20Early%20Cross-Situational%20Word%20Learning&rft.jtitle=Psychological%20science&rft.au=Frank,%20Michael%20C.&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=578&rft.epage=585&rft.pages=578-585&rft.issn=0956-7976&rft.eissn=1467-9280&rft_id=info:doi/10.1111/j.1467-9280.2009.02335.x&rft_dat=%3Cjstor_proqu%3E40575067%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904568006&rft_id=info:pmid/19389131&rft_jstor_id=40575067&rft_sage_id=10.1111_j.1467-9280.2009.02335.x&rfr_iscdi=true |