Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning

Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological science 2009-05, Vol.20 (5), p.578-585
Hauptverfasser: Frank, Michael C., Goodman, Noah D., Tenenbaum, Joshua B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 5
container_start_page 578
container_title Psychological science
container_volume 20
creator Frank, Michael C.
Goodman, Noah D.
Tenenbaum, Joshua B.
description Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.
doi_str_mv 10.1111/j.1467-9280.2009.02335.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67302748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40575067</jstor_id><sage_id>10.1111_j.1467-9280.2009.02335.x</sage_id><sourcerecordid>40575067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpaTZpf0KLoND0YmdkSZZ0LEuSBrYUki49Cq0sBTteayPZkPz7yN0lKT20c5FgvveGmYcQJlCSXGddSVgtClVJKCsAVUJFKS8fXqHFc-M1WoDidSGUqI_QcUod5BK0fouOiKJSEUoWaL1O7XCLb3bO3LmYTvG18y66YWxNj6-Gcf6FIeEx4O-hcT0-N7F_xMsYUipu2nEycz-zv0Js8MqZOGS_d-iNN31y7w_vCVpfnP9cfitWPy6vll9XhWVUjoXbNFxSZrkXG2kqz4RljBtOmPAVcd5KIA0HYxulfO0EU0qBspx4CpbLhp6gz3vfXQz3k0uj3rbJur43gwtT0rWgUAkmM_jlnyCRlEMlKwEZ_fQX2oUp5hUzpYDxWgLUmZJ7ys6XiM7rXWy3Jj5qAnrOSHd6jkLPUeg5I_07I_2QpR8PA6bN1jUvwkMoGeB7IJlb98f0_xt_2Ou6NIb47MuACw75FE9ax6YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904568006</pqid></control><display><type>article</type><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>EBSCO Business Source Complete</source><source>SAGE Journals</source><creator>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</creator><creatorcontrib>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</creatorcontrib><description>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</description><identifier>ISSN: 0956-7976</identifier><identifier>EISSN: 1467-9280</identifier><identifier>DOI: 10.1111/j.1467-9280.2009.02335.x</identifier><identifier>PMID: 19389131</identifier><language>eng</language><publisher>Los Angeles, CA: Wiley Periodicals</publisher><subject>Association Learning ; Child development ; Children ; Cognitive psychology ; Humans ; Identity formation ; Inference ; Intention ; Intentional learning ; Language acquisition ; Language Development ; Learning ; Linguistics ; Mathematical models ; Meaning ; Modeling ; Models, Psychological ; Models, Statistical ; Parametric models ; Pattern Recognition, Visual ; Probabilistic modeling ; Probabilities ; Referents ; Social Environment ; Speech Perception ; Syntax ; Toys ; Transfer (Psychology) ; Utterances ; Verbal Learning ; Vocabulary ; Vocabulary learning ; Word meaning ; Words</subject><ispartof>Psychological science, 2009-05, Vol.20 (5), p.578-585</ispartof><rights>2009 Association for Psychological Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</citedby><cites>FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40575067$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40575067$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,21798,27901,27902,43597,43598,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Michael C.</creatorcontrib><creatorcontrib>Goodman, Noah D.</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><title>Psychological science</title><addtitle>Psychol Sci</addtitle><description>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</description><subject>Association Learning</subject><subject>Child development</subject><subject>Children</subject><subject>Cognitive psychology</subject><subject>Humans</subject><subject>Identity formation</subject><subject>Inference</subject><subject>Intention</subject><subject>Intentional learning</subject><subject>Language acquisition</subject><subject>Language Development</subject><subject>Learning</subject><subject>Linguistics</subject><subject>Mathematical models</subject><subject>Meaning</subject><subject>Modeling</subject><subject>Models, Psychological</subject><subject>Models, Statistical</subject><subject>Parametric models</subject><subject>Pattern Recognition, Visual</subject><subject>Probabilistic modeling</subject><subject>Probabilities</subject><subject>Referents</subject><subject>Social Environment</subject><subject>Speech Perception</subject><subject>Syntax</subject><subject>Toys</subject><subject>Transfer (Psychology)</subject><subject>Utterances</subject><subject>Verbal Learning</subject><subject>Vocabulary</subject><subject>Vocabulary learning</subject><subject>Word meaning</subject><subject>Words</subject><issn>0956-7976</issn><issn>1467-9280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpaTZpf0KLoND0YmdkSZZ0LEuSBrYUki49Cq0sBTteayPZkPz7yN0lKT20c5FgvveGmYcQJlCSXGddSVgtClVJKCsAVUJFKS8fXqHFc-M1WoDidSGUqI_QcUod5BK0fouOiKJSEUoWaL1O7XCLb3bO3LmYTvG18y66YWxNj6-Gcf6FIeEx4O-hcT0-N7F_xMsYUipu2nEycz-zv0Js8MqZOGS_d-iNN31y7w_vCVpfnP9cfitWPy6vll9XhWVUjoXbNFxSZrkXG2kqz4RljBtOmPAVcd5KIA0HYxulfO0EU0qBspx4CpbLhp6gz3vfXQz3k0uj3rbJur43gwtT0rWgUAkmM_jlnyCRlEMlKwEZ_fQX2oUp5hUzpYDxWgLUmZJ7ys6XiM7rXWy3Jj5qAnrOSHd6jkLPUeg5I_07I_2QpR8PA6bN1jUvwkMoGeB7IJlb98f0_xt_2Ou6NIb47MuACw75FE9ax6YA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Frank, Michael C.</creator><creator>Goodman, Noah D.</creator><creator>Tenenbaum, Joshua B.</creator><general>Wiley Periodicals</general><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</title><author>Frank, Michael C. ; Goodman, Noah D. ; Tenenbaum, Joshua B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ebd5834c5f7b8a2f47c445a5147f21efc801d50acd99f6e7499909c51f30c58d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Association Learning</topic><topic>Child development</topic><topic>Children</topic><topic>Cognitive psychology</topic><topic>Humans</topic><topic>Identity formation</topic><topic>Inference</topic><topic>Intention</topic><topic>Intentional learning</topic><topic>Language acquisition</topic><topic>Language Development</topic><topic>Learning</topic><topic>Linguistics</topic><topic>Mathematical models</topic><topic>Meaning</topic><topic>Modeling</topic><topic>Models, Psychological</topic><topic>Models, Statistical</topic><topic>Parametric models</topic><topic>Pattern Recognition, Visual</topic><topic>Probabilistic modeling</topic><topic>Probabilities</topic><topic>Referents</topic><topic>Social Environment</topic><topic>Speech Perception</topic><topic>Syntax</topic><topic>Toys</topic><topic>Transfer (Psychology)</topic><topic>Utterances</topic><topic>Verbal Learning</topic><topic>Vocabulary</topic><topic>Vocabulary learning</topic><topic>Word meaning</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Michael C.</creatorcontrib><creatorcontrib>Goodman, Noah D.</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Michael C.</au><au>Goodman, Noah D.</au><au>Tenenbaum, Joshua B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning</atitle><jtitle>Psychological science</jtitle><addtitle>Psychol Sci</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>578</spage><epage>585</epage><pages>578-585</pages><issn>0956-7976</issn><eissn>1467-9280</eissn><abstract>Word learning is a "chicken and egg" problem.If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers 9 intended meanings. To the beginning learner, however, both individual word meanings and speakers 9 intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison modeh. Moreover, as the result of making probabilistic inferences about speakers 9 intentions, our model explains a variety of behavioral phenomena described in the word-learning literature.These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.</abstract><cop>Los Angeles, CA</cop><pub>Wiley Periodicals</pub><pmid>19389131</pmid><doi>10.1111/j.1467-9280.2009.02335.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-7976
ispartof Psychological science, 2009-05, Vol.20 (5), p.578-585
issn 0956-7976
1467-9280
language eng
recordid cdi_proquest_miscellaneous_67302748
source Jstor Complete Legacy; MEDLINE; EBSCO Business Source Complete; SAGE Journals
subjects Association Learning
Child development
Children
Cognitive psychology
Humans
Identity formation
Inference
Intention
Intentional learning
Language acquisition
Language Development
Learning
Linguistics
Mathematical models
Meaning
Modeling
Models, Psychological
Models, Statistical
Parametric models
Pattern Recognition, Visual
Probabilistic modeling
Probabilities
Referents
Social Environment
Speech Perception
Syntax
Toys
Transfer (Psychology)
Utterances
Verbal Learning
Vocabulary
Vocabulary learning
Word meaning
Words
title Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Speakers'%20Referential%20Intentions%20to%20Model%20Early%20Cross-Situational%20Word%20Learning&rft.jtitle=Psychological%20science&rft.au=Frank,%20Michael%20C.&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=578&rft.epage=585&rft.pages=578-585&rft.issn=0956-7976&rft.eissn=1467-9280&rft_id=info:doi/10.1111/j.1467-9280.2009.02335.x&rft_dat=%3Cjstor_proqu%3E40575067%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904568006&rft_id=info:pmid/19389131&rft_jstor_id=40575067&rft_sage_id=10.1111_j.1467-9280.2009.02335.x&rfr_iscdi=true