Comparative expression and transcript initiation of three peach dehydrin genes

Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2009-06, Vol.230 (1), p.107-118
Hauptverfasser: Bassett, Carole Leavel, Wisniewski, Michael E, Artlip, Timothy S, Richart, Greg, Norelli, John L, Farrell, Robert E. Jr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 107
container_title Planta
container_volume 230
creator Bassett, Carole Leavel
Wisniewski, Michael E
Artlip, Timothy S
Richart, Greg
Norelli, John L
Farrell, Robert E. Jr
description Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.
doi_str_mv 10.1007/s00425-009-0927-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67295945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23390597</jstor_id><sourcerecordid>23390597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-89d2b9cf907b8dfffbd04e5cd19237e0c3cb4a0ee899f6317a5dc04423a21e3a3</originalsourceid><addsrcrecordid>eNp9kEtvEzEURi0EomnhB7AARkiwG7h-jeMliihFqugCurY89nXiKBkP9qSi_76uJiISi65s6Tv3dQh5Q-EzBVBfCoBgsgXQLWimWvqMLKjgrGUgls_JAqD-QXN5Rs5L2QLUUKmX5Ixq3oHg3YL8XKX9aLOd4h02-HfMWEpMQ2MH30zZDsXlOE5NHOIUK1STFJppkxGbEa3bNB439z7HoVnjgOUVeRHsruDr43tBbi-__V5dtdc333-svl63TlI6tUvtWa9d0KD6pQ8h9B4ESuepZlwhOO56YQFxqXXoOFVWegdCMG4ZRW75Bfk09x1z-nPAMpl9LA53OztgOhTTKaalFrKCH_4Dt-mQh7qbYUApr6JYhegMuZxKyRjMmOPe5ntDwTyaNrNpU02bR9OG1pp3x8aHfo_-VHFUW4GPR8AWZ3ehynSx_OMYlUxVsHJs5kqNhjXm04ZPTX87F23LlPKpKecapFY1fz_nwSZj17kOvv1VD-ZAO94J0fEHdrWoxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201130482</pqid></control><display><type>article</type><title>Comparative expression and transcript initiation of three peach dehydrin genes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Bassett, Carole Leavel ; Wisniewski, Michael E ; Artlip, Timothy S ; Richart, Greg ; Norelli, John L ; Farrell, Robert E. Jr</creator><creatorcontrib>Bassett, Carole Leavel ; Wisniewski, Michael E ; Artlip, Timothy S ; Richart, Greg ; Norelli, John L ; Farrell, Robert E. Jr</creatorcontrib><description>Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-009-0927-1</identifier><identifier>PMID: 19360436</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agriculture ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; Cluster Analysis ; Cold Temperature ; Complementary DNA ; Dehydration ; DNA ; DNA, Plant - chemistry ; DNA, Plant - genetics ; Drought ; Ecology ; Forestry ; Fruit - genetics ; Fruit - growth &amp; development ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genes ; Life Sciences ; Low temperature ; Molecular Sequence Data ; Nucleic Acid Conformation ; Original Article ; Phylogeny ; Plant Bark - genetics ; Plant Proteins - classification ; Plant Proteins - genetics ; Plant Sciences ; Plants ; Promoter regions ; Promoter Regions, Genetic - genetics ; Protein Isoforms - classification ; Protein Isoforms - genetics ; Prunus - genetics ; Prunus - growth &amp; development ; Regulatory Sequences, Nucleic Acid - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA ; Seasons ; Sequence Analysis, DNA ; TATA box ; TATA Box - genetics ; Temperature ; Transcription Initiation Site</subject><ispartof>Planta, 2009-06, Vol.230 (1), p.107-118</ispartof><rights>Springer-Verlag 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-89d2b9cf907b8dfffbd04e5cd19237e0c3cb4a0ee899f6317a5dc04423a21e3a3</citedby><cites>FETCH-LOGICAL-c511t-89d2b9cf907b8dfffbd04e5cd19237e0c3cb4a0ee899f6317a5dc04423a21e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23390597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23390597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21527043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19360436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassett, Carole Leavel</creatorcontrib><creatorcontrib>Wisniewski, Michael E</creatorcontrib><creatorcontrib>Artlip, Timothy S</creatorcontrib><creatorcontrib>Richart, Greg</creatorcontrib><creatorcontrib>Norelli, John L</creatorcontrib><creatorcontrib>Farrell, Robert E. Jr</creatorcontrib><title>Comparative expression and transcript initiation of three peach dehydrin genes</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.</description><subject>Agriculture</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cluster Analysis</subject><subject>Cold Temperature</subject><subject>Complementary DNA</subject><subject>Dehydration</subject><subject>DNA</subject><subject>DNA, Plant - chemistry</subject><subject>DNA, Plant - genetics</subject><subject>Drought</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Fruit - genetics</subject><subject>Fruit - growth &amp; development</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant Bark - genetics</subject><subject>Plant Proteins - classification</subject><subject>Plant Proteins - genetics</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Isoforms - classification</subject><subject>Protein Isoforms - genetics</subject><subject>Prunus - genetics</subject><subject>Prunus - growth &amp; development</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA</subject><subject>Seasons</subject><subject>Sequence Analysis, DNA</subject><subject>TATA box</subject><subject>TATA Box - genetics</subject><subject>Temperature</subject><subject>Transcription Initiation Site</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtvEzEURi0EomnhB7AARkiwG7h-jeMliihFqugCurY89nXiKBkP9qSi_76uJiISi65s6Tv3dQh5Q-EzBVBfCoBgsgXQLWimWvqMLKjgrGUgls_JAqD-QXN5Rs5L2QLUUKmX5Ixq3oHg3YL8XKX9aLOd4h02-HfMWEpMQ2MH30zZDsXlOE5NHOIUK1STFJppkxGbEa3bNB439z7HoVnjgOUVeRHsruDr43tBbi-__V5dtdc333-svl63TlI6tUvtWa9d0KD6pQ8h9B4ESuepZlwhOO56YQFxqXXoOFVWegdCMG4ZRW75Bfk09x1z-nPAMpl9LA53OztgOhTTKaalFrKCH_4Dt-mQh7qbYUApr6JYhegMuZxKyRjMmOPe5ntDwTyaNrNpU02bR9OG1pp3x8aHfo_-VHFUW4GPR8AWZ3ehynSx_OMYlUxVsHJs5kqNhjXm04ZPTX87F23LlPKpKecapFY1fz_nwSZj17kOvv1VD-ZAO94J0fEHdrWoxw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Bassett, Carole Leavel</creator><creator>Wisniewski, Michael E</creator><creator>Artlip, Timothy S</creator><creator>Richart, Greg</creator><creator>Norelli, John L</creator><creator>Farrell, Robert E. Jr</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090601</creationdate><title>Comparative expression and transcript initiation of three peach dehydrin genes</title><author>Bassett, Carole Leavel ; Wisniewski, Michael E ; Artlip, Timothy S ; Richart, Greg ; Norelli, John L ; Farrell, Robert E. Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-89d2b9cf907b8dfffbd04e5cd19237e0c3cb4a0ee899f6317a5dc04423a21e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agriculture</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cluster Analysis</topic><topic>Cold Temperature</topic><topic>Complementary DNA</topic><topic>Dehydration</topic><topic>DNA</topic><topic>DNA, Plant - chemistry</topic><topic>DNA, Plant - genetics</topic><topic>Drought</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Fruit - genetics</topic><topic>Fruit - growth &amp; development</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant Bark - genetics</topic><topic>Plant Proteins - classification</topic><topic>Plant Proteins - genetics</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Isoforms - classification</topic><topic>Protein Isoforms - genetics</topic><topic>Prunus - genetics</topic><topic>Prunus - growth &amp; development</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA</topic><topic>Seasons</topic><topic>Sequence Analysis, DNA</topic><topic>TATA box</topic><topic>TATA Box - genetics</topic><topic>Temperature</topic><topic>Transcription Initiation Site</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassett, Carole Leavel</creatorcontrib><creatorcontrib>Wisniewski, Michael E</creatorcontrib><creatorcontrib>Artlip, Timothy S</creatorcontrib><creatorcontrib>Richart, Greg</creatorcontrib><creatorcontrib>Norelli, John L</creatorcontrib><creatorcontrib>Farrell, Robert E. Jr</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassett, Carole Leavel</au><au>Wisniewski, Michael E</au><au>Artlip, Timothy S</au><au>Richart, Greg</au><au>Norelli, John L</au><au>Farrell, Robert E. Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative expression and transcript initiation of three peach dehydrin genes</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>230</volume><issue>1</issue><spage>107</spage><epage>118</epage><pages>107-118</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19360436</pmid><doi>10.1007/s00425-009-0927-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2009-06, Vol.230 (1), p.107-118
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_67295945
source Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Amino acids
Biological and medical sciences
Biomedical and Life Sciences
Cluster Analysis
Cold Temperature
Complementary DNA
Dehydration
DNA
DNA, Plant - chemistry
DNA, Plant - genetics
Drought
Ecology
Forestry
Fruit - genetics
Fruit - growth & development
Fruits
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene expression regulation
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genes
Life Sciences
Low temperature
Molecular Sequence Data
Nucleic Acid Conformation
Original Article
Phylogeny
Plant Bark - genetics
Plant Proteins - classification
Plant Proteins - genetics
Plant Sciences
Plants
Promoter regions
Promoter Regions, Genetic - genetics
Protein Isoforms - classification
Protein Isoforms - genetics
Prunus - genetics
Prunus - growth & development
Regulatory Sequences, Nucleic Acid - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA
Seasons
Sequence Analysis, DNA
TATA box
TATA Box - genetics
Temperature
Transcription Initiation Site
title Comparative expression and transcript initiation of three peach dehydrin genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20expression%20and%20transcript%20initiation%20of%20three%20peach%20dehydrin%20genes&rft.jtitle=Planta&rft.au=Bassett,%20Carole%20Leavel&rft.date=2009-06-01&rft.volume=230&rft.issue=1&rft.spage=107&rft.epage=118&rft.pages=107-118&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-009-0927-1&rft_dat=%3Cjstor_proqu%3E23390597%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201130482&rft_id=info:pmid/19360436&rft_jstor_id=23390597&rfr_iscdi=true