Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids

Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2004-05, Vol.6 (3), p.251-261
Hauptverfasser: Agaba, Morris, Tocher, Douglas R, Dickson, Cathryn A, Dick, James R, Teale, Alan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 3
container_start_page 251
container_title Marine biotechnology (New York, N.Y.)
container_volume 6
creator Agaba, Morris
Tocher, Douglas R
Dickson, Cathryn A
Dick, James R
Teale, Alan J
description Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.
doi_str_mv 10.1007/s10126-003-0029-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67292524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094126841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-5a6bacad12d191bc27e7ba2a5644c43a39f15bb2863c23e315dbf72e0d2cdaa3</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxi3Uin_lAbggq4eqHELtceKQva0oSyshetlTL9bEnoBR1l7iBJX36APXy65A6sH2SN_vmxn5Y-xUigspRP0tSSFBF0KofKAp5B47lKXSBYDSH95quDxgRyk9iuypldhnB7KS0CioD9nf39QO2Pn0wO33uzmnYKPz4Z6vpn703RTs6GPAni9wHF_43HrHqY_hHhNxH55j_0wuF3w9RDe9wjx2nLyNCdcURqQQveVfQcyqUKhzjsFxFzfyA_15U2Gmt2oekD6xjx32iU527zFbLq6XVz-K2183P6_mt4UtdTkWFeoWLToJTjaytVBT3SJgpcvSlgpV08mqbeFSKwuKlKxc29VAwoF1iOqYfdm2zbs_TZRGs_LJUt9joDglo2tooIIyg5__Ax_jNORfSaZWSlQ63xmSW8gOMaWBOrMe_AqHFyOF2cRltnGZHJfZxGVk9pztGk_tity7Y5eP-gfGX5Bk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733056733</pqid></control><display><type>article</type><title>Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Agaba, Morris ; Tocher, Douglas R ; Dickson, Cathryn A ; Dick, James R ; Teale, Alan J</creator><creatorcontrib>Agaba, Morris ; Tocher, Douglas R ; Dickson, Cathryn A ; Dick, James R ; Teale, Alan J</creatorcontrib><description>Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-003-0029-1</identifier><identifier>PMID: 15129327</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Amino Acid Sequence ; Amino acids ; Animals ; Biosynthesis ; Cloning, Molecular ; DNA, Complementary - genetics ; Docosahexaenoic Acids - metabolism ; Eicosapentaenoic Acid - metabolism ; Enzymes ; Fatty acids ; Gas Chromatography-Mass Spectrometry ; Genes ; Molecular Sequence Data ; Polyunsaturated fatty acids ; Proteins ; Saccharomyces cerevisiae ; Sequence Alignment ; Sequence Analysis, DNA ; Zebrafish ; Zebrafish - genetics</subject><ispartof>Marine biotechnology (New York, N.Y.), 2004-05, Vol.6 (3), p.251-261</ispartof><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-5a6bacad12d191bc27e7ba2a5644c43a39f15bb2863c23e315dbf72e0d2cdaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15129327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agaba, Morris</creatorcontrib><creatorcontrib>Tocher, Douglas R</creatorcontrib><creatorcontrib>Dickson, Cathryn A</creatorcontrib><creatorcontrib>Dick, James R</creatorcontrib><creatorcontrib>Teale, Alan J</creatorcontrib><title>Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol (NY)</addtitle><description>Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.</description><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biosynthesis</subject><subject>Cloning, Molecular</subject><subject>DNA, Complementary - genetics</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Genes</subject><subject>Molecular Sequence Data</subject><subject>Polyunsaturated fatty acids</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc9O3DAQxi3Uin_lAbggq4eqHELtceKQva0oSyshetlTL9bEnoBR1l7iBJX36APXy65A6sH2SN_vmxn5Y-xUigspRP0tSSFBF0KofKAp5B47lKXSBYDSH95quDxgRyk9iuypldhnB7KS0CioD9nf39QO2Pn0wO33uzmnYKPz4Z6vpn703RTs6GPAni9wHF_43HrHqY_hHhNxH55j_0wuF3w9RDe9wjx2nLyNCdcURqQQveVfQcyqUKhzjsFxFzfyA_15U2Gmt2oekD6xjx32iU527zFbLq6XVz-K2183P6_mt4UtdTkWFeoWLToJTjaytVBT3SJgpcvSlgpV08mqbeFSKwuKlKxc29VAwoF1iOqYfdm2zbs_TZRGs_LJUt9joDglo2tooIIyg5__Ax_jNORfSaZWSlQ63xmSW8gOMaWBOrMe_AqHFyOF2cRltnGZHJfZxGVk9pztGk_tity7Y5eP-gfGX5Bk</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Agaba, Morris</creator><creator>Tocher, Douglas R</creator><creator>Dickson, Cathryn A</creator><creator>Dick, James R</creator><creator>Teale, Alan J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids</title><author>Agaba, Morris ; Tocher, Douglas R ; Dickson, Cathryn A ; Dick, James R ; Teale, Alan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-5a6bacad12d191bc27e7ba2a5644c43a39f15bb2863c23e315dbf72e0d2cdaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biosynthesis</topic><topic>Cloning, Molecular</topic><topic>DNA, Complementary - genetics</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Genes</topic><topic>Molecular Sequence Data</topic><topic>Polyunsaturated fatty acids</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agaba, Morris</creatorcontrib><creatorcontrib>Tocher, Douglas R</creatorcontrib><creatorcontrib>Dickson, Cathryn A</creatorcontrib><creatorcontrib>Dick, James R</creatorcontrib><creatorcontrib>Teale, Alan J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agaba, Morris</au><au>Tocher, Douglas R</au><au>Dickson, Cathryn A</au><au>Dick, James R</au><au>Teale, Alan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>6</volume><issue>3</issue><spage>251</spage><epage>261</epage><pages>251-261</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15129327</pmid><doi>10.1007/s10126-003-0029-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2004-05, Vol.6 (3), p.251-261
issn 1436-2228
1436-2236
language eng
recordid cdi_proquest_miscellaneous_67292524
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acetyltransferases - genetics
Acetyltransferases - metabolism
Amino Acid Sequence
Amino acids
Animals
Biosynthesis
Cloning, Molecular
DNA, Complementary - genetics
Docosahexaenoic Acids - metabolism
Eicosapentaenoic Acid - metabolism
Enzymes
Fatty acids
Gas Chromatography-Mass Spectrometry
Genes
Molecular Sequence Data
Polyunsaturated fatty acids
Proteins
Saccharomyces cerevisiae
Sequence Alignment
Sequence Analysis, DNA
Zebrafish
Zebrafish - genetics
title Zebrafish cDNA encoding multifunctional Fatty Acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zebrafish%20cDNA%20encoding%20multifunctional%20Fatty%20Acid%20elongase%20involved%20in%20production%20of%20eicosapentaenoic%20(20:5n-3)%20and%20docosahexaenoic%20(22:6n-3)%20acids&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Agaba,%20Morris&rft.date=2004-05-01&rft.volume=6&rft.issue=3&rft.spage=251&rft.epage=261&rft.pages=251-261&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-003-0029-1&rft_dat=%3Cproquest_cross%3E2094126841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733056733&rft_id=info:pmid/15129327&rfr_iscdi=true