Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2

Fe-based superconductors have attracted tremendous interest recently. New evidence on BaFe 2 As 2 shows that chemical doping and pressure, both of which induce superconductivity, distort the lattice in similar ways. The result provides important information in the quest for an understanding of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2009-06, Vol.8 (6), p.471-475
Hauptverfasser: Kimber, Simon A. J., Kreyssig, Andreas, Zhang, Yu-Zhong, Jeschke, Harald O., Valentí, Roser, Yokaichiya, Fabiano, Colombier, Estelle, Yan, Jiaqiang, Hansen, Thomas C., Chatterji, Tapan, McQueeney, Robert J., Canfield, Paul C., Goldman, Alan I., Argyriou, Dimitri N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 6
container_start_page 471
container_title Nature materials
container_volume 8
creator Kimber, Simon A. J.
Kreyssig, Andreas
Zhang, Yu-Zhong
Jeschke, Harald O.
Valentí, Roser
Yokaichiya, Fabiano
Colombier, Estelle
Yan, Jiaqiang
Hansen, Thomas C.
Chatterji, Tapan
McQueeney, Robert J.
Canfield, Paul C.
Goldman, Alan I.
Argyriou, Dimitri N.
description Fe-based superconductors have attracted tremendous interest recently. New evidence on BaFe 2 As 2 shows that chemical doping and pressure, both of which induce superconductivity, distort the lattice in similar ways. The result provides important information in the quest for an understanding of the mechanism behind superconductivity. The discovery of a new family of high-T C materials 1 , the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets 2 , 3 , 4 , 5 , and that superconductivity can be induced by either chemical substitution 6 or application of pressure 7 , in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked 8 , 9 ; however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe 2 As 2 , namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As–Fe–As bond angle and Fe–Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe 2 As 2 .
doi_str_mv 10.1038/nmat2443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67284068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1720729351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3bc5869fe6b6329a5ceeee75740d9e34a74261b5586d75e6f8bae51c799c85ab3</originalsourceid><addsrcrecordid>eNpl0MtKxDAYBeAgiqOj4BNIcSG6GM297XIUbyC4UNclTf_RjG1ac0F8G5_FJzPDjAxoNgnJl5NwEDog-IxgVpzbTgXKOdtAO4TncsKlxJurNSGUjtCu93OMKRFCbqMRKTnmlOMd9PZoOtMqZ4IBn9UQPgBs5oOLOkSn2qwxPvQumN76LNoG3PfX4MD76CBTtsn0K3RGL2A_GPuSmXQ7DuB0b5uUsdi6UNdAp57uoa2Zaj3sr-Yxer6-erq8ndw_3NxdTu8nmrEiTFitRSHLGchaMloqoSGNXOQcNyUwrnJOJalFQk0uQM6KWoEgOi9LXQhVszE6XuYOrn-P4EPVGa-hbZWFPvpK5rTgWBYJHv2B8z46m_5WUUpzgUvGEzpZIu167x3MqsGZTrnPiuBq0X71236ih6u8WHfQrOGq7gROl8CnI_sCbv3gv7AfyUyQhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222750934</pqid></control><display><type>article</type><title>Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kimber, Simon A. J. ; Kreyssig, Andreas ; Zhang, Yu-Zhong ; Jeschke, Harald O. ; Valentí, Roser ; Yokaichiya, Fabiano ; Colombier, Estelle ; Yan, Jiaqiang ; Hansen, Thomas C. ; Chatterji, Tapan ; McQueeney, Robert J. ; Canfield, Paul C. ; Goldman, Alan I. ; Argyriou, Dimitri N.</creator><creatorcontrib>Kimber, Simon A. J. ; Kreyssig, Andreas ; Zhang, Yu-Zhong ; Jeschke, Harald O. ; Valentí, Roser ; Yokaichiya, Fabiano ; Colombier, Estelle ; Yan, Jiaqiang ; Hansen, Thomas C. ; Chatterji, Tapan ; McQueeney, Robert J. ; Canfield, Paul C. ; Goldman, Alan I. ; Argyriou, Dimitri N.</creatorcontrib><description>Fe-based superconductors have attracted tremendous interest recently. New evidence on BaFe 2 As 2 shows that chemical doping and pressure, both of which induce superconductivity, distort the lattice in similar ways. The result provides important information in the quest for an understanding of the mechanism behind superconductivity. The discovery of a new family of high-T C materials 1 , the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets 2 , 3 , 4 , 5 , and that superconductivity can be induced by either chemical substitution 6 or application of pressure 7 , in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked 8 , 9 ; however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe 2 As 2 , namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As–Fe–As bond angle and Fe–Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe 2 As 2 .</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2443</identifier><identifier>PMID: 19404240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Arsenic ; Biomaterials ; Chemical compounds ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; High pressure ; Iron ; letter ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Superconductivity</subject><ispartof>Nature materials, 2009-06, Vol.8 (6), p.471-475</ispartof><rights>Springer Nature Limited 2009</rights><rights>Copyright Nature Publishing Group Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3bc5869fe6b6329a5ceeee75740d9e34a74261b5586d75e6f8bae51c799c85ab3</citedby><cites>FETCH-LOGICAL-c338t-3bc5869fe6b6329a5ceeee75740d9e34a74261b5586d75e6f8bae51c799c85ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19404240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimber, Simon A. J.</creatorcontrib><creatorcontrib>Kreyssig, Andreas</creatorcontrib><creatorcontrib>Zhang, Yu-Zhong</creatorcontrib><creatorcontrib>Jeschke, Harald O.</creatorcontrib><creatorcontrib>Valentí, Roser</creatorcontrib><creatorcontrib>Yokaichiya, Fabiano</creatorcontrib><creatorcontrib>Colombier, Estelle</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Chatterji, Tapan</creatorcontrib><creatorcontrib>McQueeney, Robert J.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Goldman, Alan I.</creatorcontrib><creatorcontrib>Argyriou, Dimitri N.</creatorcontrib><title>Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Fe-based superconductors have attracted tremendous interest recently. New evidence on BaFe 2 As 2 shows that chemical doping and pressure, both of which induce superconductivity, distort the lattice in similar ways. The result provides important information in the quest for an understanding of the mechanism behind superconductivity. The discovery of a new family of high-T C materials 1 , the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets 2 , 3 , 4 , 5 , and that superconductivity can be induced by either chemical substitution 6 or application of pressure 7 , in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked 8 , 9 ; however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe 2 As 2 , namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As–Fe–As bond angle and Fe–Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe 2 As 2 .</description><subject>Arsenic</subject><subject>Biomaterials</subject><subject>Chemical compounds</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>High pressure</subject><subject>Iron</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Superconductivity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0MtKxDAYBeAgiqOj4BNIcSG6GM297XIUbyC4UNclTf_RjG1ac0F8G5_FJzPDjAxoNgnJl5NwEDog-IxgVpzbTgXKOdtAO4TncsKlxJurNSGUjtCu93OMKRFCbqMRKTnmlOMd9PZoOtMqZ4IBn9UQPgBs5oOLOkSn2qwxPvQumN76LNoG3PfX4MD76CBTtsn0K3RGL2A_GPuSmXQ7DuB0b5uUsdi6UNdAp57uoa2Zaj3sr-Yxer6-erq8ndw_3NxdTu8nmrEiTFitRSHLGchaMloqoSGNXOQcNyUwrnJOJalFQk0uQM6KWoEgOi9LXQhVszE6XuYOrn-P4EPVGa-hbZWFPvpK5rTgWBYJHv2B8z46m_5WUUpzgUvGEzpZIu167x3MqsGZTrnPiuBq0X71236ih6u8WHfQrOGq7gROl8CnI_sCbv3gv7AfyUyQhA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kimber, Simon A. J.</creator><creator>Kreyssig, Andreas</creator><creator>Zhang, Yu-Zhong</creator><creator>Jeschke, Harald O.</creator><creator>Valentí, Roser</creator><creator>Yokaichiya, Fabiano</creator><creator>Colombier, Estelle</creator><creator>Yan, Jiaqiang</creator><creator>Hansen, Thomas C.</creator><creator>Chatterji, Tapan</creator><creator>McQueeney, Robert J.</creator><creator>Canfield, Paul C.</creator><creator>Goldman, Alan I.</creator><creator>Argyriou, Dimitri N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090601</creationdate><title>Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2</title><author>Kimber, Simon A. J. ; Kreyssig, Andreas ; Zhang, Yu-Zhong ; Jeschke, Harald O. ; Valentí, Roser ; Yokaichiya, Fabiano ; Colombier, Estelle ; Yan, Jiaqiang ; Hansen, Thomas C. ; Chatterji, Tapan ; McQueeney, Robert J. ; Canfield, Paul C. ; Goldman, Alan I. ; Argyriou, Dimitri N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3bc5869fe6b6329a5ceeee75740d9e34a74261b5586d75e6f8bae51c799c85ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arsenic</topic><topic>Biomaterials</topic><topic>Chemical compounds</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>High pressure</topic><topic>Iron</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimber, Simon A. J.</creatorcontrib><creatorcontrib>Kreyssig, Andreas</creatorcontrib><creatorcontrib>Zhang, Yu-Zhong</creatorcontrib><creatorcontrib>Jeschke, Harald O.</creatorcontrib><creatorcontrib>Valentí, Roser</creatorcontrib><creatorcontrib>Yokaichiya, Fabiano</creatorcontrib><creatorcontrib>Colombier, Estelle</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Chatterji, Tapan</creatorcontrib><creatorcontrib>McQueeney, Robert J.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Goldman, Alan I.</creatorcontrib><creatorcontrib>Argyriou, Dimitri N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimber, Simon A. J.</au><au>Kreyssig, Andreas</au><au>Zhang, Yu-Zhong</au><au>Jeschke, Harald O.</au><au>Valentí, Roser</au><au>Yokaichiya, Fabiano</au><au>Colombier, Estelle</au><au>Yan, Jiaqiang</au><au>Hansen, Thomas C.</au><au>Chatterji, Tapan</au><au>McQueeney, Robert J.</au><au>Canfield, Paul C.</au><au>Goldman, Alan I.</au><au>Argyriou, Dimitri N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>8</volume><issue>6</issue><spage>471</spage><epage>475</epage><pages>471-475</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Fe-based superconductors have attracted tremendous interest recently. New evidence on BaFe 2 As 2 shows that chemical doping and pressure, both of which induce superconductivity, distort the lattice in similar ways. The result provides important information in the quest for an understanding of the mechanism behind superconductivity. The discovery of a new family of high-T C materials 1 , the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets 2 , 3 , 4 , 5 , and that superconductivity can be induced by either chemical substitution 6 or application of pressure 7 , in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked 8 , 9 ; however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe 2 As 2 , namely suppression of the tetragonal-to-orthorhombic phase transition and reduction in the As–Fe–As bond angle and Fe–Fe distance, show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe 2 As 2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19404240</pmid><doi>10.1038/nmat2443</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2009-06, Vol.8 (6), p.471-475
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_67284068
source Nature; Alma/SFX Local Collection
subjects Arsenic
Biomaterials
Chemical compounds
Chemistry and Materials Science
Condensed Matter Physics
Crystal structure
High pressure
Iron
letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Superconductivity
title Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarities%20between%20structural%20distortions%20under%C2%A0pressure%20and%20chemical%20doping%20in%20superconducting%20BaFe2As2&rft.jtitle=Nature%20materials&rft.au=Kimber,%20Simon%20A.%20J.&rft.date=2009-06-01&rft.volume=8&rft.issue=6&rft.spage=471&rft.epage=475&rft.pages=471-475&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2443&rft_dat=%3Cproquest_cross%3E1720729351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222750934&rft_id=info:pmid/19404240&rfr_iscdi=true