Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter

The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca(2+)/H(+) antiporters. CAX2 has a low affinity for Ca(2+) but can tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2004-12, Vol.56 (6), p.959-971
Hauptverfasser: Pittman, J.K, Shigaki, T, Marshall, J.L, Morris, J.L, Cheng, N.H, Hirschi, K.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 6
container_start_page 959
container_title Plant molecular biology
container_volume 56
creator Pittman, J.K
Shigaki, T
Marshall, J.L
Morris, J.L
Cheng, N.H
Hirschi, K.D
description The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca(2+)/H(+) antiporters. CAX2 has a low affinity for Ca(2+) but can transport other metals including Mn(2+) and Cd(2+). Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca(2+)/H(+) antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn(2+)/H(+) antiport and, like cax1 mutants, reduced V-type H(+)-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter beta-glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H(+) antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H(+) gradients and the V-ATPase.
doi_str_mv 10.1007/s11103-004-6446-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67277446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67277446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-334ee4852270aaf09ee8b3b5d4583b8f0b1c8a12c6a141358776ec6066b1a6e13</originalsourceid><addsrcrecordid>eNqFkT1v2zAURYmiReM4_QFdUiFDNyXv8VujYSRNgQAZmgTZiCeZshXIoktKg_99aNhAgC6diEece4d7GPuOcI0A5iYhIogSQJZaSl2KT2yGyohSAbef2QxQm1JK5GfsPKU3gJwS-is7Q2U5VpWYsZe7aWjGLgzUFzSsiujXU09jiPt8Ur9PXSpCW4wbXywi1d0q7A5f44b6LgPFcvHKi4YODcUYaUi7EEcfL9iXlvrkv53eOXu-u31a3pcPj79-LxcPZSOlGUshpPfSKs4NELVQeW9rUauVVFbUtoUaG0vIG00oUShrjPaNBq1rJO1RzNnPY-8uhr-TT6PbdqnxfU-DD1Ny2nBj8jT_BbGyaCDPM2dX_4BvYYp5iuSMNpWCSpoM4RFqYkgp-tbtYreluHcI7qDGHdW4rMYd1DiRM5en4qne-tVH4uQiAz-OQEvB0Tp2yT3_4YAia1OaGyveAYDKkYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>767950947</pqid></control><display><type>article</type><title>Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Pittman, J.K ; Shigaki, T ; Marshall, J.L ; Morris, J.L ; Cheng, N.H ; Hirschi, K.D</creator><creatorcontrib>Pittman, J.K ; Shigaki, T ; Marshall, J.L ; Morris, J.L ; Cheng, N.H ; Hirschi, K.D</creatorcontrib><description>The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca(2+)/H(+) antiporters. CAX2 has a low affinity for Ca(2+) but can transport other metals including Mn(2+) and Cd(2+). Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca(2+)/H(+) antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn(2+)/H(+) antiport and, like cax1 mutants, reduced V-type H(+)-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter beta-glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H(+) antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H(+) gradients and the V-ATPase.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-004-6446-3</identifier><identifier>PMID: 15821993</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; antiporters ; Antiporters - genetics ; Antiporters - physiology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; Biological Transport ; cadmium ; calcium ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - physiology ; Cation Transport Proteins - genetics ; Cation Transport Proteins - physiology ; cations ; enzyme activity ; Gene Deletion ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Genotype ; Glucuronidase - genetics ; Glucuronidase - metabolism ; H-transporting ATPase ; histochemistry ; ion transport ; manganese ; Manganese - metabolism ; metals ; Molecular Sequence Data ; Mutation ; Plant tissues ; Plants, Genetically Modified ; Proteins ; proton pump ; protons ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Time Factors ; transporters ; Vacuolar Proton-Translocating ATPases - metabolism ; vacuoles ; Vacuoles - metabolism ; Yeasts</subject><ispartof>Plant molecular biology, 2004-12, Vol.56 (6), p.959-971</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-334ee4852270aaf09ee8b3b5d4583b8f0b1c8a12c6a141358776ec6066b1a6e13</citedby><cites>FETCH-LOGICAL-c447t-334ee4852270aaf09ee8b3b5d4583b8f0b1c8a12c6a141358776ec6066b1a6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15821993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pittman, J.K</creatorcontrib><creatorcontrib>Shigaki, T</creatorcontrib><creatorcontrib>Marshall, J.L</creatorcontrib><creatorcontrib>Morris, J.L</creatorcontrib><creatorcontrib>Cheng, N.H</creatorcontrib><creatorcontrib>Hirschi, K.D</creatorcontrib><title>Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca(2+)/H(+) antiporters. CAX2 has a low affinity for Ca(2+) but can transport other metals including Mn(2+) and Cd(2+). Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca(2+)/H(+) antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn(2+)/H(+) antiport and, like cax1 mutants, reduced V-type H(+)-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter beta-glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H(+) antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H(+) gradients and the V-ATPase.</description><subject>Amino Acid Sequence</subject><subject>antiporters</subject><subject>Antiporters - genetics</subject><subject>Antiporters - physiology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>cadmium</subject><subject>calcium</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - physiology</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - physiology</subject><subject>cations</subject><subject>enzyme activity</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotype</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>H-transporting ATPase</subject><subject>histochemistry</subject><subject>ion transport</subject><subject>manganese</subject><subject>Manganese - metabolism</subject><subject>metals</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plant tissues</subject><subject>Plants, Genetically Modified</subject><subject>Proteins</subject><subject>proton pump</subject><subject>protons</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Time Factors</subject><subject>transporters</subject><subject>Vacuolar Proton-Translocating ATPases - metabolism</subject><subject>vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Yeasts</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkT1v2zAURYmiReM4_QFdUiFDNyXv8VujYSRNgQAZmgTZiCeZshXIoktKg_99aNhAgC6diEece4d7GPuOcI0A5iYhIogSQJZaSl2KT2yGyohSAbef2QxQm1JK5GfsPKU3gJwS-is7Q2U5VpWYsZe7aWjGLgzUFzSsiujXU09jiPt8Ur9PXSpCW4wbXywi1d0q7A5f44b6LgPFcvHKi4YODcUYaUi7EEcfL9iXlvrkv53eOXu-u31a3pcPj79-LxcPZSOlGUshpPfSKs4NELVQeW9rUauVVFbUtoUaG0vIG00oUShrjPaNBq1rJO1RzNnPY-8uhr-TT6PbdqnxfU-DD1Ny2nBj8jT_BbGyaCDPM2dX_4BvYYp5iuSMNpWCSpoM4RFqYkgp-tbtYreluHcI7qDGHdW4rMYd1DiRM5en4qne-tVH4uQiAz-OQEvB0Tp2yT3_4YAia1OaGyveAYDKkYQ</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Pittman, J.K</creator><creator>Shigaki, T</creator><creator>Marshall, J.L</creator><creator>Morris, J.L</creator><creator>Cheng, N.H</creator><creator>Hirschi, K.D</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter</title><author>Pittman, J.K ; Shigaki, T ; Marshall, J.L ; Morris, J.L ; Cheng, N.H ; Hirschi, K.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-334ee4852270aaf09ee8b3b5d4583b8f0b1c8a12c6a141358776ec6066b1a6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>antiporters</topic><topic>Antiporters - genetics</topic><topic>Antiporters - physiology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>cadmium</topic><topic>calcium</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - physiology</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - physiology</topic><topic>cations</topic><topic>enzyme activity</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotype</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>H-transporting ATPase</topic><topic>histochemistry</topic><topic>ion transport</topic><topic>manganese</topic><topic>Manganese - metabolism</topic><topic>metals</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plant tissues</topic><topic>Plants, Genetically Modified</topic><topic>Proteins</topic><topic>proton pump</topic><topic>protons</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Time Factors</topic><topic>transporters</topic><topic>Vacuolar Proton-Translocating ATPases - metabolism</topic><topic>vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pittman, J.K</creatorcontrib><creatorcontrib>Shigaki, T</creatorcontrib><creatorcontrib>Marshall, J.L</creatorcontrib><creatorcontrib>Morris, J.L</creatorcontrib><creatorcontrib>Cheng, N.H</creatorcontrib><creatorcontrib>Hirschi, K.D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pittman, J.K</au><au>Shigaki, T</au><au>Marshall, J.L</au><au>Morris, J.L</au><au>Cheng, N.H</au><au>Hirschi, K.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>56</volume><issue>6</issue><spage>959</spage><epage>971</epage><pages>959-971</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca(2+)/H(+) antiporters. CAX2 has a low affinity for Ca(2+) but can transport other metals including Mn(2+) and Cd(2+). Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca(2+)/H(+) antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn(2+)/H(+) antiport and, like cax1 mutants, reduced V-type H(+)-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter beta-glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H(+) antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H(+) gradients and the V-ATPase.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>15821993</pmid><doi>10.1007/s11103-004-6446-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2004-12, Vol.56 (6), p.959-971
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_67277446
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Amino Acid Sequence
antiporters
Antiporters - genetics
Antiporters - physiology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Biological Transport
cadmium
calcium
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - physiology
Cation Transport Proteins - genetics
Cation Transport Proteins - physiology
cations
enzyme activity
Gene Deletion
Gene Expression Regulation, Developmental
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
Genotype
Glucuronidase - genetics
Glucuronidase - metabolism
H-transporting ATPase
histochemistry
ion transport
manganese
Manganese - metabolism
metals
Molecular Sequence Data
Mutation
Plant tissues
Plants, Genetically Modified
Proteins
proton pump
protons
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Time Factors
transporters
Vacuolar Proton-Translocating ATPases - metabolism
vacuoles
Vacuoles - metabolism
Yeasts
title Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20and%20regulatory%20analysis%20of%20the%20Arabidopsis%20thaliana%20CAX2%20cation%20transporter&rft.jtitle=Plant%20molecular%20biology&rft.au=Pittman,%20J.K&rft.date=2004-12-01&rft.volume=56&rft.issue=6&rft.spage=959&rft.epage=971&rft.pages=959-971&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-004-6446-3&rft_dat=%3Cproquest_cross%3E67277446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=767950947&rft_id=info:pmid/15821993&rfr_iscdi=true