Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats

Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2009-06, Vol.180 (2), p.278-289
Hauptverfasser: Behrend, Christina E., Cassim, Shiraz M., Pallone, Matthew J., Daubenspeck, J. Andrew, Hartov, A., Roberts, David W., Leiter, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 2
container_start_page 278
container_title Journal of neuroscience methods
container_volume 180
creator Behrend, Christina E.
Cassim, Shiraz M.
Pallone, Matthew J.
Daubenspeck, J. Andrew
Hartov, A.
Roberts, David W.
Leiter, J.C.
description Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90 s periods during which stimulation (100 μA, 150 Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99; n = 11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.
doi_str_mv 10.1016/j.jneumeth.2009.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67276000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027009001903</els_id><sourcerecordid>67276000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIpPAL0ReseuO3d3jBytQwkuKxCZI7Cy3XWY8uNuDH6D8PR7NIJZZ1aLOrZLuQeiakp4Sym72_X6FukDZ9QMhsidTTwh9hjZU8KFjXHx_jjYN3HZk4OQCXea8J4RMkrCX6ILKiU1bKjYoP8Q_OlnsAOyszU9s4lpSDAEstgAHPCftV5yLX2rQxcf1Lb57XPXiTcbR4R-hFr3oAjhBAJ0BN7rsAOc6l50ORxCv1QSo-bhKuuRX6IXTIcPr87xC3z5-eLj93N1__fTl9v19Z0bJS6cZEMuH2QhLnDSaG8nGSTizdaMWs5sFlWxLuHFS85laYWcmODgxMmPBDeMVenO6e0jxV4Vc1OKzgRD0CrFmxfjAWSvlSbA1zOVIRQPZCTQp5pzAqUPyi06PihJ19KL26p-XY0oqMqnmpQWvzx_qvID9HzuLaMC7EwCtkN8eksrGw2rA-gSmKBv9Uz_-AkgJpX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20079318</pqid></control><display><type>article</type><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</creator><creatorcontrib>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</creatorcontrib><description>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90 s periods during which stimulation (100 μA, 150 Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99; n = 11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2009.04.001</identifier><identifier>PMID: 19464518</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biosensing Techniques ; Computer Simulation ; Deep brain stimulation ; Deep Brain Stimulation - instrumentation ; Deep Brain Stimulation - methods ; Extracellular Fluid - metabolism ; Feedback - physiology ; Glutamate ; Glutamic Acid - metabolism ; Glutamic Acid - secretion ; Neurochemistry - instrumentation ; Neurochemistry - methods ; Parkinson's disease ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - secretion ; Rats ; Rats, Sprague-Dawley ; Signal Processing, Computer-Assisted ; Software ; Subthalamic nucleus ; Subthalamic Nucleus - metabolism ; Subthalamic Nucleus - secretion ; Synaptic Transmission - physiology ; System identification ; Transfer function</subject><ispartof>Journal of neuroscience methods, 2009-06, Vol.180 (2), p.278-289</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</citedby><cites>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027009001903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19464518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrend, Christina E.</creatorcontrib><creatorcontrib>Cassim, Shiraz M.</creatorcontrib><creatorcontrib>Pallone, Matthew J.</creatorcontrib><creatorcontrib>Daubenspeck, J. Andrew</creatorcontrib><creatorcontrib>Hartov, A.</creatorcontrib><creatorcontrib>Roberts, David W.</creatorcontrib><creatorcontrib>Leiter, J.C.</creatorcontrib><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90 s periods during which stimulation (100 μA, 150 Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99; n = 11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Computer Simulation</subject><subject>Deep brain stimulation</subject><subject>Deep Brain Stimulation - instrumentation</subject><subject>Deep Brain Stimulation - methods</subject><subject>Extracellular Fluid - metabolism</subject><subject>Feedback - physiology</subject><subject>Glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - secretion</subject><subject>Neurochemistry - instrumentation</subject><subject>Neurochemistry - methods</subject><subject>Parkinson's disease</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - secretion</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Subthalamic nucleus</subject><subject>Subthalamic Nucleus - metabolism</subject><subject>Subthalamic Nucleus - secretion</subject><subject>Synaptic Transmission - physiology</subject><subject>System identification</subject><subject>Transfer function</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIpPAL0ReseuO3d3jBytQwkuKxCZI7Cy3XWY8uNuDH6D8PR7NIJZZ1aLOrZLuQeiakp4Sym72_X6FukDZ9QMhsidTTwh9hjZU8KFjXHx_jjYN3HZk4OQCXea8J4RMkrCX6ILKiU1bKjYoP8Q_OlnsAOyszU9s4lpSDAEstgAHPCftV5yLX2rQxcf1Lb57XPXiTcbR4R-hFr3oAjhBAJ0BN7rsAOc6l50ORxCv1QSo-bhKuuRX6IXTIcPr87xC3z5-eLj93N1__fTl9v19Z0bJS6cZEMuH2QhLnDSaG8nGSTizdaMWs5sFlWxLuHFS85laYWcmODgxMmPBDeMVenO6e0jxV4Vc1OKzgRD0CrFmxfjAWSvlSbA1zOVIRQPZCTQp5pzAqUPyi06PihJ19KL26p-XY0oqMqnmpQWvzx_qvID9HzuLaMC7EwCtkN8eksrGw2rA-gSmKBv9Uz_-AkgJpX4</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Behrend, Christina E.</creator><creator>Cassim, Shiraz M.</creator><creator>Pallone, Matthew J.</creator><creator>Daubenspeck, J. Andrew</creator><creator>Hartov, A.</creator><creator>Roberts, David W.</creator><creator>Leiter, J.C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090615</creationdate><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><author>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Computer Simulation</topic><topic>Deep brain stimulation</topic><topic>Deep Brain Stimulation - instrumentation</topic><topic>Deep Brain Stimulation - methods</topic><topic>Extracellular Fluid - metabolism</topic><topic>Feedback - physiology</topic><topic>Glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - secretion</topic><topic>Neurochemistry - instrumentation</topic><topic>Neurochemistry - methods</topic><topic>Parkinson's disease</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - secretion</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Subthalamic nucleus</topic><topic>Subthalamic Nucleus - metabolism</topic><topic>Subthalamic Nucleus - secretion</topic><topic>Synaptic Transmission - physiology</topic><topic>System identification</topic><topic>Transfer function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrend, Christina E.</creatorcontrib><creatorcontrib>Cassim, Shiraz M.</creatorcontrib><creatorcontrib>Pallone, Matthew J.</creatorcontrib><creatorcontrib>Daubenspeck, J. Andrew</creatorcontrib><creatorcontrib>Hartov, A.</creatorcontrib><creatorcontrib>Roberts, David W.</creatorcontrib><creatorcontrib>Leiter, J.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrend, Christina E.</au><au>Cassim, Shiraz M.</au><au>Pallone, Matthew J.</au><au>Daubenspeck, J. Andrew</au><au>Hartov, A.</au><au>Roberts, David W.</au><au>Leiter, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2009-06-15</date><risdate>2009</risdate><volume>180</volume><issue>2</issue><spage>278</spage><epage>289</epage><pages>278-289</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90 s periods during which stimulation (100 μA, 150 Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99; n = 11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19464518</pmid><doi>10.1016/j.jneumeth.2009.04.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2009-06, Vol.180 (2), p.278-289
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_67276000
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Biosensing Techniques
Computer Simulation
Deep brain stimulation
Deep Brain Stimulation - instrumentation
Deep Brain Stimulation - methods
Extracellular Fluid - metabolism
Feedback - physiology
Glutamate
Glutamic Acid - metabolism
Glutamic Acid - secretion
Neurochemistry - instrumentation
Neurochemistry - methods
Parkinson's disease
Presynaptic Terminals - metabolism
Presynaptic Terminals - secretion
Rats
Rats, Sprague-Dawley
Signal Processing, Computer-Assisted
Software
Subthalamic nucleus
Subthalamic Nucleus - metabolism
Subthalamic Nucleus - secretion
Synaptic Transmission - physiology
System identification
Transfer function
title Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20feedback%20controlled%20deep%20brain%20stimulation:%20Dynamics%20of%20glutamate%20release%20in%20the%20subthalamic%20nucleus%20in%20rats&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Behrend,%20Christina%20E.&rft.date=2009-06-15&rft.volume=180&rft.issue=2&rft.spage=278&rft.epage=289&rft.pages=278-289&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2009.04.001&rft_dat=%3Cproquest_cross%3E67276000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20079318&rft_id=info:pmid/19464518&rft_els_id=S0165027009001903&rfr_iscdi=true