Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats
Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2009-06, Vol.180 (2), p.278-289 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 2 |
container_start_page | 278 |
container_title | Journal of neuroscience methods |
container_volume | 180 |
creator | Behrend, Christina E. Cassim, Shiraz M. Pallone, Matthew J. Daubenspeck, J. Andrew Hartov, A. Roberts, David W. Leiter, J.C. |
description | Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90
s periods during which stimulation (100
μA, 150
Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99;
n
=
11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN. |
doi_str_mv | 10.1016/j.jneumeth.2009.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67276000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027009001903</els_id><sourcerecordid>67276000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIpPAL0ReseuO3d3jBytQwkuKxCZI7Cy3XWY8uNuDH6D8PR7NIJZZ1aLOrZLuQeiakp4Sym72_X6FukDZ9QMhsidTTwh9hjZU8KFjXHx_jjYN3HZk4OQCXea8J4RMkrCX6ILKiU1bKjYoP8Q_OlnsAOyszU9s4lpSDAEstgAHPCftV5yLX2rQxcf1Lb57XPXiTcbR4R-hFr3oAjhBAJ0BN7rsAOc6l50ORxCv1QSo-bhKuuRX6IXTIcPr87xC3z5-eLj93N1__fTl9v19Z0bJS6cZEMuH2QhLnDSaG8nGSTizdaMWs5sFlWxLuHFS85laYWcmODgxMmPBDeMVenO6e0jxV4Vc1OKzgRD0CrFmxfjAWSvlSbA1zOVIRQPZCTQp5pzAqUPyi06PihJ19KL26p-XY0oqMqnmpQWvzx_qvID9HzuLaMC7EwCtkN8eksrGw2rA-gSmKBv9Uz_-AkgJpX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20079318</pqid></control><display><type>article</type><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</creator><creatorcontrib>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</creatorcontrib><description>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90
s periods during which stimulation (100
μA, 150
Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99;
n
=
11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2009.04.001</identifier><identifier>PMID: 19464518</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biosensing Techniques ; Computer Simulation ; Deep brain stimulation ; Deep Brain Stimulation - instrumentation ; Deep Brain Stimulation - methods ; Extracellular Fluid - metabolism ; Feedback - physiology ; Glutamate ; Glutamic Acid - metabolism ; Glutamic Acid - secretion ; Neurochemistry - instrumentation ; Neurochemistry - methods ; Parkinson's disease ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - secretion ; Rats ; Rats, Sprague-Dawley ; Signal Processing, Computer-Assisted ; Software ; Subthalamic nucleus ; Subthalamic Nucleus - metabolism ; Subthalamic Nucleus - secretion ; Synaptic Transmission - physiology ; System identification ; Transfer function</subject><ispartof>Journal of neuroscience methods, 2009-06, Vol.180 (2), p.278-289</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</citedby><cites>FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027009001903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19464518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrend, Christina E.</creatorcontrib><creatorcontrib>Cassim, Shiraz M.</creatorcontrib><creatorcontrib>Pallone, Matthew J.</creatorcontrib><creatorcontrib>Daubenspeck, J. Andrew</creatorcontrib><creatorcontrib>Hartov, A.</creatorcontrib><creatorcontrib>Roberts, David W.</creatorcontrib><creatorcontrib>Leiter, J.C.</creatorcontrib><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90
s periods during which stimulation (100
μA, 150
Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99;
n
=
11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Computer Simulation</subject><subject>Deep brain stimulation</subject><subject>Deep Brain Stimulation - instrumentation</subject><subject>Deep Brain Stimulation - methods</subject><subject>Extracellular Fluid - metabolism</subject><subject>Feedback - physiology</subject><subject>Glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - secretion</subject><subject>Neurochemistry - instrumentation</subject><subject>Neurochemistry - methods</subject><subject>Parkinson's disease</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - secretion</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Subthalamic nucleus</subject><subject>Subthalamic Nucleus - metabolism</subject><subject>Subthalamic Nucleus - secretion</subject><subject>Synaptic Transmission - physiology</subject><subject>System identification</subject><subject>Transfer function</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIpPAL0ReseuO3d3jBytQwkuKxCZI7Cy3XWY8uNuDH6D8PR7NIJZZ1aLOrZLuQeiakp4Sym72_X6FukDZ9QMhsidTTwh9hjZU8KFjXHx_jjYN3HZk4OQCXea8J4RMkrCX6ILKiU1bKjYoP8Q_OlnsAOyszU9s4lpSDAEstgAHPCftV5yLX2rQxcf1Lb57XPXiTcbR4R-hFr3oAjhBAJ0BN7rsAOc6l50ORxCv1QSo-bhKuuRX6IXTIcPr87xC3z5-eLj93N1__fTl9v19Z0bJS6cZEMuH2QhLnDSaG8nGSTizdaMWs5sFlWxLuHFS85laYWcmODgxMmPBDeMVenO6e0jxV4Vc1OKzgRD0CrFmxfjAWSvlSbA1zOVIRQPZCTQp5pzAqUPyi06PihJ19KL26p-XY0oqMqnmpQWvzx_qvID9HzuLaMC7EwCtkN8eksrGw2rA-gSmKBv9Uz_-AkgJpX4</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Behrend, Christina E.</creator><creator>Cassim, Shiraz M.</creator><creator>Pallone, Matthew J.</creator><creator>Daubenspeck, J. Andrew</creator><creator>Hartov, A.</creator><creator>Roberts, David W.</creator><creator>Leiter, J.C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090615</creationdate><title>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</title><author>Behrend, Christina E. ; Cassim, Shiraz M. ; Pallone, Matthew J. ; Daubenspeck, J. Andrew ; Hartov, A. ; Roberts, David W. ; Leiter, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a6e0d72bc8d0f9ca7c96348fc5f3a8bfb8196507cf9a7b1d8db687ef836cdef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Computer Simulation</topic><topic>Deep brain stimulation</topic><topic>Deep Brain Stimulation - instrumentation</topic><topic>Deep Brain Stimulation - methods</topic><topic>Extracellular Fluid - metabolism</topic><topic>Feedback - physiology</topic><topic>Glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - secretion</topic><topic>Neurochemistry - instrumentation</topic><topic>Neurochemistry - methods</topic><topic>Parkinson's disease</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - secretion</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Subthalamic nucleus</topic><topic>Subthalamic Nucleus - metabolism</topic><topic>Subthalamic Nucleus - secretion</topic><topic>Synaptic Transmission - physiology</topic><topic>System identification</topic><topic>Transfer function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrend, Christina E.</creatorcontrib><creatorcontrib>Cassim, Shiraz M.</creatorcontrib><creatorcontrib>Pallone, Matthew J.</creatorcontrib><creatorcontrib>Daubenspeck, J. Andrew</creatorcontrib><creatorcontrib>Hartov, A.</creatorcontrib><creatorcontrib>Roberts, David W.</creatorcontrib><creatorcontrib>Leiter, J.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrend, Christina E.</au><au>Cassim, Shiraz M.</au><au>Pallone, Matthew J.</au><au>Daubenspeck, J. Andrew</au><au>Hartov, A.</au><au>Roberts, David W.</au><au>Leiter, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2009-06-15</date><risdate>2009</risdate><volume>180</volume><issue>2</issue><spage>278</spage><epage>289</epage><pages>278-289</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90
s periods during which stimulation (100
μA, 150
Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99;
n
=
11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19464518</pmid><doi>10.1016/j.jneumeth.2009.04.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2009-06, Vol.180 (2), p.278-289 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_proquest_miscellaneous_67276000 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Animals Biosensing Techniques Computer Simulation Deep brain stimulation Deep Brain Stimulation - instrumentation Deep Brain Stimulation - methods Extracellular Fluid - metabolism Feedback - physiology Glutamate Glutamic Acid - metabolism Glutamic Acid - secretion Neurochemistry - instrumentation Neurochemistry - methods Parkinson's disease Presynaptic Terminals - metabolism Presynaptic Terminals - secretion Rats Rats, Sprague-Dawley Signal Processing, Computer-Assisted Software Subthalamic nucleus Subthalamic Nucleus - metabolism Subthalamic Nucleus - secretion Synaptic Transmission - physiology System identification Transfer function |
title | Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20feedback%20controlled%20deep%20brain%20stimulation:%20Dynamics%20of%20glutamate%20release%20in%20the%20subthalamic%20nucleus%20in%20rats&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Behrend,%20Christina%20E.&rft.date=2009-06-15&rft.volume=180&rft.issue=2&rft.spage=278&rft.epage=289&rft.pages=278-289&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2009.04.001&rft_dat=%3Cproquest_cross%3E67276000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20079318&rft_id=info:pmid/19464518&rft_els_id=S0165027009001903&rfr_iscdi=true |