Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism

Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 Å length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 × √3 surface reconstruction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2004-02, Vol.20 (4), p.1258-1268
Hauptverfasser: Schneider, Kevin S, Lu, Wei, Fosnacht, Daniel R, Orr, B. G, Banaszak Holl, Mark M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1268
container_issue 4
container_start_page 1258
container_title Langmuir
container_volume 20
creator Schneider, Kevin S
Lu, Wei
Fosnacht, Daniel R
Orr, B. G
Banaszak Holl, Mark M
description Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 Å length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 × √3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases:  an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au−Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.
doi_str_mv 10.1021/la0360916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67270281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67270281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-6cca119491382a88a86a752530df9b2ad4aa587b22e5ae349eea771984fccb933</originalsourceid><addsrcrecordid>eNpt0E1v1DAQBmALgei2cOAPIF9A4hDwRxw7R7SlfKjbVtoi9WZNnAnrksTFTqouvx6jrMqF0xzmmRnNS8grzt5zJviHHpisWM2rJ2TFlWCFMkI_JSumS1nospJH5DilW8ZYLcv6OTniyjCpWbUiu9P9CIN31I9066eZrncQwU0Y_W-YfBhp6Ohl_AFjNpswhh72GOlZiMPSvvdAgV6Ee-zpdm7SFGHCYoOtz7WlG3S7PJuGF-RZB33Cl4d6Qr6ffbpefynOLz9_XX88L6Dkaioq54Dzuqy5NAKMAVOBVkJJ1nZ1I6AtAZTRjRCoAPM3iKA1r03ZOdfUUp6Qt8veuxh-zZgmO_jksO9hxDAnW2mhmTA8w3cLdDGkFLGzd9EPEPeWM_s3VvsYa7avD0vnZsD2nzzkmEGxAJ8mfHjsQ_yZD0qt7PXV1m5vqptvp1fKXmT_ZvHgkr0NcxxzJv85_AcQ1I3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67270281</pqid></control><display><type>article</type><title>Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism</title><source>ACS Publications</source><creator>Schneider, Kevin S ; Lu, Wei ; Fosnacht, Daniel R ; Orr, B. G ; Banaszak Holl, Mark M</creator><creatorcontrib>Schneider, Kevin S ; Lu, Wei ; Fosnacht, Daniel R ; Orr, B. G ; Banaszak Holl, Mark M</creatorcontrib><description>Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 Å length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 × √3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases:  an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au−Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0360916</identifier><identifier>PMID: 15803706</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2004-02, Vol.20 (4), p.1258-1268</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-6cca119491382a88a86a752530df9b2ad4aa587b22e5ae349eea771984fccb933</citedby><cites>FETCH-LOGICAL-a415t-6cca119491382a88a86a752530df9b2ad4aa587b22e5ae349eea771984fccb933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0360916$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0360916$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15803706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Kevin S</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Fosnacht, Daniel R</creatorcontrib><creatorcontrib>Orr, B. G</creatorcontrib><creatorcontrib>Banaszak Holl, Mark M</creatorcontrib><title>Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 Å length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 × √3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases:  an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au−Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpt0E1v1DAQBmALgei2cOAPIF9A4hDwRxw7R7SlfKjbVtoi9WZNnAnrksTFTqouvx6jrMqF0xzmmRnNS8grzt5zJviHHpisWM2rJ2TFlWCFMkI_JSumS1nospJH5DilW8ZYLcv6OTniyjCpWbUiu9P9CIN31I9066eZrncQwU0Y_W-YfBhp6Ohl_AFjNpswhh72GOlZiMPSvvdAgV6Ee-zpdm7SFGHCYoOtz7WlG3S7PJuGF-RZB33Cl4d6Qr6ffbpefynOLz9_XX88L6Dkaioq54Dzuqy5NAKMAVOBVkJJ1nZ1I6AtAZTRjRCoAPM3iKA1r03ZOdfUUp6Qt8veuxh-zZgmO_jksO9hxDAnW2mhmTA8w3cLdDGkFLGzd9EPEPeWM_s3VvsYa7avD0vnZsD2nzzkmEGxAJ8mfHjsQ_yZD0qt7PXV1m5vqptvp1fKXmT_ZvHgkr0NcxxzJv85_AcQ1I3E</recordid><startdate>20040217</startdate><enddate>20040217</enddate><creator>Schneider, Kevin S</creator><creator>Lu, Wei</creator><creator>Fosnacht, Daniel R</creator><creator>Orr, B. G</creator><creator>Banaszak Holl, Mark M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040217</creationdate><title>Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism</title><author>Schneider, Kevin S ; Lu, Wei ; Fosnacht, Daniel R ; Orr, B. G ; Banaszak Holl, Mark M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-6cca119491382a88a86a752530df9b2ad4aa587b22e5ae349eea771984fccb933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Kevin S</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Fosnacht, Daniel R</creatorcontrib><creatorcontrib>Orr, B. G</creatorcontrib><creatorcontrib>Banaszak Holl, Mark M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Kevin S</au><au>Lu, Wei</au><au>Fosnacht, Daniel R</au><au>Orr, B. G</au><au>Banaszak Holl, Mark M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2004-02-17</date><risdate>2004</risdate><volume>20</volume><issue>4</issue><spage>1258</spage><epage>1268</epage><pages>1258-1268</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 Å length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 × √3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases:  an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au−Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15803706</pmid><doi>10.1021/la0360916</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2004-02, Vol.20 (4), p.1258-1268
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_67270281
source ACS Publications
title Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20in%20Situ%20Characterization%20of%20Organic%20Monolayer%20Formation%20via%20a%20Novel%20Substrate-Mediated%20Mechanism&rft.jtitle=Langmuir&rft.au=Schneider,%20Kevin%20S&rft.date=2004-02-17&rft.volume=20&rft.issue=4&rft.spage=1258&rft.epage=1268&rft.pages=1258-1268&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la0360916&rft_dat=%3Cproquest_cross%3E67270281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67270281&rft_id=info:pmid/15803706&rfr_iscdi=true