Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates

The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modelin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2009-06, Vol.131 (6), p.064501-8
Hauptverfasser: Luo, Huiyang, Dai, Chenkai, Gan, Rong Z, Lu, Hongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 6
container_start_page 064501
container_title Journal of biomechanical engineering
container_volume 131
creator Luo, Huiyang
Dai, Chenkai
Gan, Rong Z
Lu, Hongbing
description The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 300–2000 s−1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.
doi_str_mv 10.1115/1.3118770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67257931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20687801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-34ddcebea013ee636125c6aac71db1c7feb7476c310439a976e9b3aa358927013</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgio6XhWtBshJcVHOaNmmWMqgjOCheFq7CaXuqHabtmDQLd76Gr-eTWJ0Bl7M6EL78OeRn7BDEGQCk53AmATKtxQYbQRpnUWZS2GQjAUkWCS1hh-16PxNiUInYZjtgksQYDSN2PyX0wVFDbc-7ir90oX39_vzyfNqVYR787-EkNNjyp49mgW1d8Ck1ucOWOPZ8Ur--8cfeYd3yB-zJ77OtCueeDlZzjz1fXT6NJ9Ht3fXN-OI2QqnSPpJJWRaUEwqQREoqiNNCIRYayhwKXVGuE60KCSKRBo1WZHKJKNPMxHq4tMdOlrkL170H8r1tal_QfD4s1gVvlY5TbeR6KBMFWaz1WhgLlens7-nTJSxc572jyi5c3aD7sCDsbyEW7KqQwR6vQkPeUPkvVw0M4GgJ0DdkZ11w7fBtVhqjUiN_AOcIjcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20687801</pqid></control><display><type>article</type><title>Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><creator>Luo, Huiyang ; Dai, Chenkai ; Gan, Rong Z ; Lu, Hongbing</creator><creatorcontrib>Luo, Huiyang ; Dai, Chenkai ; Gan, Rong Z ; Lu, Hongbing</creatorcontrib><description>The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 300–2000 s−1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.3118770</identifier><identifier>PMID: 19449971</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Biomechanical Phenomena ; Blast Injuries ; Elastic Modulus ; Finite Element Analysis ; Humans ; Tympanic Membrane - chemistry ; Tympanic Membrane - injuries ; Tympanic Membrane - physiology</subject><ispartof>Journal of biomechanical engineering, 2009-06, Vol.131 (6), p.064501-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-34ddcebea013ee636125c6aac71db1c7feb7476c310439a976e9b3aa358927013</citedby><cites>FETCH-LOGICAL-a365t-34ddcebea013ee636125c6aac71db1c7feb7476c310439a976e9b3aa358927013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19449971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Huiyang</creatorcontrib><creatorcontrib>Dai, Chenkai</creatorcontrib><creatorcontrib>Gan, Rong Z</creatorcontrib><creatorcontrib>Lu, Hongbing</creatorcontrib><title>Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 300–2000 s−1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.</description><subject>Biomechanical Phenomena</subject><subject>Blast Injuries</subject><subject>Elastic Modulus</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Tympanic Membrane - chemistry</subject><subject>Tympanic Membrane - injuries</subject><subject>Tympanic Membrane - physiology</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctKxDAUBuAgio6XhWtBshJcVHOaNmmWMqgjOCheFq7CaXuqHabtmDQLd76Gr-eTWJ0Bl7M6EL78OeRn7BDEGQCk53AmATKtxQYbQRpnUWZS2GQjAUkWCS1hh-16PxNiUInYZjtgksQYDSN2PyX0wVFDbc-7ir90oX39_vzyfNqVYR787-EkNNjyp49mgW1d8Ck1ucOWOPZ8Ur--8cfeYd3yB-zJ77OtCueeDlZzjz1fXT6NJ9Ht3fXN-OI2QqnSPpJJWRaUEwqQREoqiNNCIRYayhwKXVGuE60KCSKRBo1WZHKJKNPMxHq4tMdOlrkL170H8r1tal_QfD4s1gVvlY5TbeR6KBMFWaz1WhgLlens7-nTJSxc572jyi5c3aD7sCDsbyEW7KqQwR6vQkPeUPkvVw0M4GgJ0DdkZ11w7fBtVhqjUiN_AOcIjcs</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Luo, Huiyang</creator><creator>Dai, Chenkai</creator><creator>Gan, Rong Z</creator><creator>Lu, Hongbing</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090601</creationdate><title>Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates</title><author>Luo, Huiyang ; Dai, Chenkai ; Gan, Rong Z ; Lu, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-34ddcebea013ee636125c6aac71db1c7feb7476c310439a976e9b3aa358927013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomechanical Phenomena</topic><topic>Blast Injuries</topic><topic>Elastic Modulus</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Tympanic Membrane - chemistry</topic><topic>Tympanic Membrane - injuries</topic><topic>Tympanic Membrane - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Huiyang</creatorcontrib><creatorcontrib>Dai, Chenkai</creatorcontrib><creatorcontrib>Gan, Rong Z</creatorcontrib><creatorcontrib>Lu, Hongbing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Huiyang</au><au>Dai, Chenkai</au><au>Gan, Rong Z</au><au>Lu, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>131</volume><issue>6</issue><spage>064501</spage><epage>8</epage><pages>064501-8</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 300–2000 s−1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.</abstract><cop>United States</cop><pub>ASME</pub><pmid>19449971</pmid><doi>10.1115/1.3118770</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 2009-06, Vol.131 (6), p.064501-8
issn 0148-0731
1528-8951
language eng
recordid cdi_proquest_miscellaneous_67257931
source MEDLINE; ASME Transactions Journals (Current)
subjects Biomechanical Phenomena
Blast Injuries
Elastic Modulus
Finite Element Analysis
Humans
Tympanic Membrane - chemistry
Tympanic Membrane - injuries
Tympanic Membrane - physiology
title Measurement of Young’s Modulus of Human Tympanic Membrane at High Strain Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Young%E2%80%99s%20Modulus%20of%20Human%20Tympanic%20Membrane%20at%20High%20Strain%20Rates&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Luo,%20Huiyang&rft.date=2009-06-01&rft.volume=131&rft.issue=6&rft.spage=064501&rft.epage=8&rft.pages=064501-8&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.3118770&rft_dat=%3Cproquest_cross%3E20687801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20687801&rft_id=info:pmid/19449971&rfr_iscdi=true