Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation

The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2005-05, Vol.26 (13), p.1523-1532
Hauptverfasser: Cooper, James A., Lu, Helen H., Ko, Frank K., Freeman, Joseph W., Laurencin, Cato T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1532
container_issue 13
container_start_page 1523
container_title Biomaterials
container_volume 26
creator Cooper, James A.
Lu, Helen H.
Ko, Frank K.
Freeman, Joseph W.
Laurencin, Cato T.
description The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide- co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233 μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.
doi_str_mv 10.1016/j.biomaterials.2004.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67249160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961204004909</els_id><sourcerecordid>67249160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</originalsourceid><addsrcrecordid>eNqNkU1v3CAQQFHVqtkk_QsV6qE3u4DBxrlVSZNUitRLc0Z8DCtWNmzBXqn_vmx3peaWnhiGNzPAQ-gTJS0ltP-ya01Is14gBz2VlhHCWyJaQvkbtKFykI0YiXiLNjXDmrGn7AJdlrIjdU84e48uqBCMDYJvULwPBnJjdAGHl1DKCg3EbYgAuWaK1d6nyWGfMp7CVs8QF5xhP2kLx_gGOyhhG7FNsQQHWS-hRlhHh0PEh7DkhOGgp_XvwTV65-ud4cN5vULP999-3j42Tz8evt9-fWos7-TSCG-oHXknpAEmKRmZ1J0wnvJB1lcM1BnRg7Rd71jPnB9MT0evtRsEc6BZd4U-n_ruc_q1QlnUHIqFadIR0lpUPzA-0p68CjIpiBS0exWkI-ecdrSCNyfQ5lRKBq_2Ocw6_1aUqKM_tVMv_amjP0WEqnZq8cfzlNXM4P6VnoVV4O4EQP29Q4Csig0QLbiQwS7KpfA_c_4A__C0mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444131</pqid></control><display><type>article</type><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</creator><creatorcontrib>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</creatorcontrib><description>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide- co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233 μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2004.05.014</identifier><identifier>PMID: 15522754</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Absorbable Implants ; Animals ; Anterior cruciate ligament ; Anterior Cruciate Ligament - cytology ; Anterior Cruciate Ligament - growth &amp; development ; Anterior Cruciate Ligament - surgery ; Biocompatible Materials - chemistry ; Bioprosthesis ; Cell Adhesion - physiology ; Cell Culture Techniques - methods ; Cell Movement - physiology ; Cell Proliferation ; Cells, Cultured ; Degradable ; Elasticity ; Fibroblasts - cytology ; Fibroblasts - physiology ; Lactic Acid - chemistry ; Ligament and ligament tissue engineering ; Ligament repair ; Materials Testing ; Mice ; Mice, Inbred BALB C ; Polyglycolic Acid - chemistry ; Polymer ; Polymers - chemistry ; Porosity ; Rabbits ; Surface Properties ; Tensile Strength ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Biomaterials, 2005-05, Vol.26 (13), p.1523-1532</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</citedby><cites>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961204004909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15522754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, James A.</creatorcontrib><creatorcontrib>Lu, Helen H.</creatorcontrib><creatorcontrib>Ko, Frank K.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide- co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233 μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</description><subject>Absorbable Implants</subject><subject>Animals</subject><subject>Anterior cruciate ligament</subject><subject>Anterior Cruciate Ligament - cytology</subject><subject>Anterior Cruciate Ligament - growth &amp; development</subject><subject>Anterior Cruciate Ligament - surgery</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioprosthesis</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Movement - physiology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Degradable</subject><subject>Elasticity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Lactic Acid - chemistry</subject><subject>Ligament and ligament tissue engineering</subject><subject>Ligament repair</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymer</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Surface Properties</subject><subject>Tensile Strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v3CAQQFHVqtkk_QsV6qE3u4DBxrlVSZNUitRLc0Z8DCtWNmzBXqn_vmx3peaWnhiGNzPAQ-gTJS0ltP-ya01Is14gBz2VlhHCWyJaQvkbtKFykI0YiXiLNjXDmrGn7AJdlrIjdU84e48uqBCMDYJvULwPBnJjdAGHl1DKCg3EbYgAuWaK1d6nyWGfMp7CVs8QF5xhP2kLx_gGOyhhG7FNsQQHWS-hRlhHh0PEh7DkhOGgp_XvwTV65-ud4cN5vULP999-3j42Tz8evt9-fWos7-TSCG-oHXknpAEmKRmZ1J0wnvJB1lcM1BnRg7Rd71jPnB9MT0evtRsEc6BZd4U-n_ruc_q1QlnUHIqFadIR0lpUPzA-0p68CjIpiBS0exWkI-ecdrSCNyfQ5lRKBq_2Ocw6_1aUqKM_tVMv_amjP0WEqnZq8cfzlNXM4P6VnoVV4O4EQP29Q4Csig0QLbiQwS7KpfA_c_4A__C0mw</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Cooper, James A.</creator><creator>Lu, Helen H.</creator><creator>Ko, Frank K.</creator><creator>Freeman, Joseph W.</creator><creator>Laurencin, Cato T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><author>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorbable Implants</topic><topic>Animals</topic><topic>Anterior cruciate ligament</topic><topic>Anterior Cruciate Ligament - cytology</topic><topic>Anterior Cruciate Ligament - growth &amp; development</topic><topic>Anterior Cruciate Ligament - surgery</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioprosthesis</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Movement - physiology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Degradable</topic><topic>Elasticity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Lactic Acid - chemistry</topic><topic>Ligament and ligament tissue engineering</topic><topic>Ligament repair</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymer</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Surface Properties</topic><topic>Tensile Strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, James A.</creatorcontrib><creatorcontrib>Lu, Helen H.</creatorcontrib><creatorcontrib>Ko, Frank K.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, James A.</au><au>Lu, Helen H.</au><au>Ko, Frank K.</au><au>Freeman, Joseph W.</au><au>Laurencin, Cato T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>26</volume><issue>13</issue><spage>1523</spage><epage>1532</epage><pages>1523-1532</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide- co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233 μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15522754</pmid><doi>10.1016/j.biomaterials.2004.05.014</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2005-05, Vol.26 (13), p.1523-1532
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_67249160
source MEDLINE; Elsevier ScienceDirect Journals
subjects Absorbable Implants
Animals
Anterior cruciate ligament
Anterior Cruciate Ligament - cytology
Anterior Cruciate Ligament - growth & development
Anterior Cruciate Ligament - surgery
Biocompatible Materials - chemistry
Bioprosthesis
Cell Adhesion - physiology
Cell Culture Techniques - methods
Cell Movement - physiology
Cell Proliferation
Cells, Cultured
Degradable
Elasticity
Fibroblasts - cytology
Fibroblasts - physiology
Lactic Acid - chemistry
Ligament and ligament tissue engineering
Ligament repair
Materials Testing
Mice
Mice, Inbred BALB C
Polyglycolic Acid - chemistry
Polymer
Polymers - chemistry
Porosity
Rabbits
Surface Properties
Tensile Strength
Tissue engineering
Tissue Engineering - methods
title Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-based%20tissue-engineered%20scaffold%20for%20ligament%20replacement:%20design%20considerations%20and%20in%20vitro%20evaluation&rft.jtitle=Biomaterials&rft.au=Cooper,%20James%20A.&rft.date=2005-05-01&rft.volume=26&rft.issue=13&rft.spage=1523&rft.epage=1532&rft.pages=1523-1532&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2004.05.014&rft_dat=%3Cproquest_cross%3E67249160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19444131&rft_id=info:pmid/15522754&rft_els_id=S0142961204004909&rfr_iscdi=true