Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation
The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2005-05, Vol.26 (13), p.1523-1532 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1532 |
---|---|
container_issue | 13 |
container_start_page | 1523 |
container_title | Biomaterials |
container_volume | 26 |
creator | Cooper, James A. Lu, Helen H. Ko, Frank K. Freeman, Joseph W. Laurencin, Cato T. |
description | The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide-
co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233
μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament. |
doi_str_mv | 10.1016/j.biomaterials.2004.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67249160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961204004909</els_id><sourcerecordid>67249160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</originalsourceid><addsrcrecordid>eNqNkU1v3CAQQFHVqtkk_QsV6qE3u4DBxrlVSZNUitRLc0Z8DCtWNmzBXqn_vmx3peaWnhiGNzPAQ-gTJS0ltP-ya01Is14gBz2VlhHCWyJaQvkbtKFykI0YiXiLNjXDmrGn7AJdlrIjdU84e48uqBCMDYJvULwPBnJjdAGHl1DKCg3EbYgAuWaK1d6nyWGfMp7CVs8QF5xhP2kLx_gGOyhhG7FNsQQHWS-hRlhHh0PEh7DkhOGgp_XvwTV65-ud4cN5vULP999-3j42Tz8evt9-fWos7-TSCG-oHXknpAEmKRmZ1J0wnvJB1lcM1BnRg7Rd71jPnB9MT0evtRsEc6BZd4U-n_ruc_q1QlnUHIqFadIR0lpUPzA-0p68CjIpiBS0exWkI-ecdrSCNyfQ5lRKBq_2Ocw6_1aUqKM_tVMv_amjP0WEqnZq8cfzlNXM4P6VnoVV4O4EQP29Q4Csig0QLbiQwS7KpfA_c_4A__C0mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444131</pqid></control><display><type>article</type><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</creator><creatorcontrib>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</creatorcontrib><description>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide-
co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233
μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2004.05.014</identifier><identifier>PMID: 15522754</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Absorbable Implants ; Animals ; Anterior cruciate ligament ; Anterior Cruciate Ligament - cytology ; Anterior Cruciate Ligament - growth & development ; Anterior Cruciate Ligament - surgery ; Biocompatible Materials - chemistry ; Bioprosthesis ; Cell Adhesion - physiology ; Cell Culture Techniques - methods ; Cell Movement - physiology ; Cell Proliferation ; Cells, Cultured ; Degradable ; Elasticity ; Fibroblasts - cytology ; Fibroblasts - physiology ; Lactic Acid - chemistry ; Ligament and ligament tissue engineering ; Ligament repair ; Materials Testing ; Mice ; Mice, Inbred BALB C ; Polyglycolic Acid - chemistry ; Polymer ; Polymers - chemistry ; Porosity ; Rabbits ; Surface Properties ; Tensile Strength ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Biomaterials, 2005-05, Vol.26 (13), p.1523-1532</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</citedby><cites>FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961204004909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15522754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, James A.</creatorcontrib><creatorcontrib>Lu, Helen H.</creatorcontrib><creatorcontrib>Ko, Frank K.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide-
co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233
μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</description><subject>Absorbable Implants</subject><subject>Animals</subject><subject>Anterior cruciate ligament</subject><subject>Anterior Cruciate Ligament - cytology</subject><subject>Anterior Cruciate Ligament - growth & development</subject><subject>Anterior Cruciate Ligament - surgery</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioprosthesis</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Movement - physiology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Degradable</subject><subject>Elasticity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Lactic Acid - chemistry</subject><subject>Ligament and ligament tissue engineering</subject><subject>Ligament repair</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymer</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Surface Properties</subject><subject>Tensile Strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v3CAQQFHVqtkk_QsV6qE3u4DBxrlVSZNUitRLc0Z8DCtWNmzBXqn_vmx3peaWnhiGNzPAQ-gTJS0ltP-ya01Is14gBz2VlhHCWyJaQvkbtKFykI0YiXiLNjXDmrGn7AJdlrIjdU84e48uqBCMDYJvULwPBnJjdAGHl1DKCg3EbYgAuWaK1d6nyWGfMp7CVs8QF5xhP2kLx_gGOyhhG7FNsQQHWS-hRlhHh0PEh7DkhOGgp_XvwTV65-ud4cN5vULP999-3j42Tz8evt9-fWos7-TSCG-oHXknpAEmKRmZ1J0wnvJB1lcM1BnRg7Rd71jPnB9MT0evtRsEc6BZd4U-n_ruc_q1QlnUHIqFadIR0lpUPzA-0p68CjIpiBS0exWkI-ecdrSCNyfQ5lRKBq_2Ocw6_1aUqKM_tVMv_amjP0WEqnZq8cfzlNXM4P6VnoVV4O4EQP29Q4Csig0QLbiQwS7KpfA_c_4A__C0mw</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Cooper, James A.</creator><creator>Lu, Helen H.</creator><creator>Ko, Frank K.</creator><creator>Freeman, Joseph W.</creator><creator>Laurencin, Cato T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</title><author>Cooper, James A. ; Lu, Helen H. ; Ko, Frank K. ; Freeman, Joseph W. ; Laurencin, Cato T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5fb1c94358be2810928a35bf147800171db56e8c36d262df7b619faad752dea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorbable Implants</topic><topic>Animals</topic><topic>Anterior cruciate ligament</topic><topic>Anterior Cruciate Ligament - cytology</topic><topic>Anterior Cruciate Ligament - growth & development</topic><topic>Anterior Cruciate Ligament - surgery</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioprosthesis</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Movement - physiology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Degradable</topic><topic>Elasticity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Lactic Acid - chemistry</topic><topic>Ligament and ligament tissue engineering</topic><topic>Ligament repair</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymer</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Surface Properties</topic><topic>Tensile Strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, James A.</creatorcontrib><creatorcontrib>Lu, Helen H.</creatorcontrib><creatorcontrib>Ko, Frank K.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, James A.</au><au>Lu, Helen H.</au><au>Ko, Frank K.</au><au>Freeman, Joseph W.</au><au>Laurencin, Cato T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>26</volume><issue>13</issue><spage>1523</spage><epage>1532</epage><pages>1523-1532</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The anterior cruciate ligament (ACL) is the major intraarticular ligamentous structure of the knee, which functions as a joint stabilizer. It is the most commonly injured ligament of the knee, with over 150,000 ACL surgeries performed annually in the United States. Due to limitations associated with current grafts for ACL reconstruction, there is a significant demand for alternative graft systems. We report here the development of a biodegradable, tissue-engineered ACL graft. Several design parameters including construct architecture, porosity, degradability, and cell source were examined. This graft system is based on polymeric fibers of polylactide-
co-glycolide 10:90, and it was fabricated using a novel, three-dimensional braiding technology. The resultant micro-porous scaffold exhibited optimal pore diameters (175–233
μm) for ligament tissue ingrowth, and initial mechanical properties of the construct approximate those of the native ligament.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15522754</pmid><doi>10.1016/j.biomaterials.2004.05.014</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2005-05, Vol.26 (13), p.1523-1532 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_67249160 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Absorbable Implants Animals Anterior cruciate ligament Anterior Cruciate Ligament - cytology Anterior Cruciate Ligament - growth & development Anterior Cruciate Ligament - surgery Biocompatible Materials - chemistry Bioprosthesis Cell Adhesion - physiology Cell Culture Techniques - methods Cell Movement - physiology Cell Proliferation Cells, Cultured Degradable Elasticity Fibroblasts - cytology Fibroblasts - physiology Lactic Acid - chemistry Ligament and ligament tissue engineering Ligament repair Materials Testing Mice Mice, Inbred BALB C Polyglycolic Acid - chemistry Polymer Polymers - chemistry Porosity Rabbits Surface Properties Tensile Strength Tissue engineering Tissue Engineering - methods |
title | Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-based%20tissue-engineered%20scaffold%20for%20ligament%20replacement:%20design%20considerations%20and%20in%20vitro%20evaluation&rft.jtitle=Biomaterials&rft.au=Cooper,%20James%20A.&rft.date=2005-05-01&rft.volume=26&rft.issue=13&rft.spage=1523&rft.epage=1532&rft.pages=1523-1532&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2004.05.014&rft_dat=%3Cproquest_cross%3E67249160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19444131&rft_id=info:pmid/15522754&rft_els_id=S0142961204004909&rfr_iscdi=true |