Acetylation of mitochondrial proteins
Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of compl...
Gespeichert in:
Veröffentlicht in: | Methods in enzymology 2009, Vol.457, p.137-147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Methods in enzymology |
container_volume | 457 |
creator | Hirschey, Matthew D Shimazu, Tadahiro Huang, Jing-Yi Verdin, Eric |
description | Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of complex I and thereby regulates their enzymatic activity. SIRT3 is therefore emerging as a metabolic sensor that responds to change in the energy status of the cell via NAD(+) and that modulates the activity of key metabolic enzymes via protein deacetylation. Here we review experimental approaches that can be used in vitro and in vivo to study the role of acetylation in mitochondrial cell biology. |
doi_str_mv | 10.1016/S0076-6879(09)05008-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67228167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67228167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-69b6b9817cfd836ff09466104e59d9f2e399afcc0cc92e0b8830461a2ee1fe8a3</originalsourceid><addsrcrecordid>eNo1j0tLw0AURgdBbK3-BKUbRRfReyfJnbnLUnxBwYW6DpPJHYzkUTPJov--BevqbA7n41PqCuEBAenxA8BQQtbwHfA95AA2SU_UHPPcJIatnanzGH8AtLGMZ2qGnGmyRHN1s_Iy7ho31n237MOyrcfef_ddNdSuWW6HfpS6ixfqNLgmyuWRC_X1_PS5fk027y9v69Um8cg4JsQllWzR-FDZlEIAzogQMsm54qAlZXbBe_CetUBpbQoZodMiGMS6dKFu_7qH4d9J4li0dfTSNK6TfooFGa0tkjmI10dxKlupiu1Qt27YFf_H0j2ZHE5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67228167</pqid></control><display><type>article</type><title>Acetylation of mitochondrial proteins</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hirschey, Matthew D ; Shimazu, Tadahiro ; Huang, Jing-Yi ; Verdin, Eric</creator><creatorcontrib>Hirschey, Matthew D ; Shimazu, Tadahiro ; Huang, Jing-Yi ; Verdin, Eric</creatorcontrib><description>Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of complex I and thereby regulates their enzymatic activity. SIRT3 is therefore emerging as a metabolic sensor that responds to change in the energy status of the cell via NAD(+) and that modulates the activity of key metabolic enzymes via protein deacetylation. Here we review experimental approaches that can be used in vitro and in vivo to study the role of acetylation in mitochondrial cell biology.</description><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(09)05008-3</identifier><identifier>PMID: 19426866</identifier><language>eng</language><publisher>United States</publisher><subject>Acetylation ; Animals ; Humans ; Immunoprecipitation ; Mitochondria - enzymology ; Mitochondrial Proteins - analysis ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - isolation & purification ; Mitochondrial Proteins - metabolism ; Plasmids - genetics ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Sirtuins - genetics ; Sirtuins - isolation & purification ; Sirtuins - metabolism</subject><ispartof>Methods in enzymology, 2009, Vol.457, p.137-147</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-69b6b9817cfd836ff09466104e59d9f2e399afcc0cc92e0b8830461a2ee1fe8a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19426866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirschey, Matthew D</creatorcontrib><creatorcontrib>Shimazu, Tadahiro</creatorcontrib><creatorcontrib>Huang, Jing-Yi</creatorcontrib><creatorcontrib>Verdin, Eric</creatorcontrib><title>Acetylation of mitochondrial proteins</title><title>Methods in enzymology</title><addtitle>Methods Enzymol</addtitle><description>Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of complex I and thereby regulates their enzymatic activity. SIRT3 is therefore emerging as a metabolic sensor that responds to change in the energy status of the cell via NAD(+) and that modulates the activity of key metabolic enzymes via protein deacetylation. Here we review experimental approaches that can be used in vitro and in vivo to study the role of acetylation in mitochondrial cell biology.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondrial Proteins - analysis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - isolation & purification</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Plasmids - genetics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - isolation & purification</subject><subject>Sirtuins - metabolism</subject><issn>1557-7988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j0tLw0AURgdBbK3-BKUbRRfReyfJnbnLUnxBwYW6DpPJHYzkUTPJov--BevqbA7n41PqCuEBAenxA8BQQtbwHfA95AA2SU_UHPPcJIatnanzGH8AtLGMZ2qGnGmyRHN1s_Iy7ho31n237MOyrcfef_ddNdSuWW6HfpS6ixfqNLgmyuWRC_X1_PS5fk027y9v69Um8cg4JsQllWzR-FDZlEIAzogQMsm54qAlZXbBe_CetUBpbQoZodMiGMS6dKFu_7qH4d9J4li0dfTSNK6TfooFGa0tkjmI10dxKlupiu1Qt27YFf_H0j2ZHE5F</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Hirschey, Matthew D</creator><creator>Shimazu, Tadahiro</creator><creator>Huang, Jing-Yi</creator><creator>Verdin, Eric</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Acetylation of mitochondrial proteins</title><author>Hirschey, Matthew D ; Shimazu, Tadahiro ; Huang, Jing-Yi ; Verdin, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-69b6b9817cfd836ff09466104e59d9f2e399afcc0cc92e0b8830461a2ee1fe8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondrial Proteins - analysis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - isolation & purification</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Plasmids - genetics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - isolation & purification</topic><topic>Sirtuins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschey, Matthew D</creatorcontrib><creatorcontrib>Shimazu, Tadahiro</creatorcontrib><creatorcontrib>Huang, Jing-Yi</creatorcontrib><creatorcontrib>Verdin, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschey, Matthew D</au><au>Shimazu, Tadahiro</au><au>Huang, Jing-Yi</au><au>Verdin, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylation of mitochondrial proteins</atitle><jtitle>Methods in enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2009</date><risdate>2009</risdate><volume>457</volume><spage>137</spage><epage>147</epage><pages>137-147</pages><eissn>1557-7988</eissn><abstract>Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of complex I and thereby regulates their enzymatic activity. SIRT3 is therefore emerging as a metabolic sensor that responds to change in the energy status of the cell via NAD(+) and that modulates the activity of key metabolic enzymes via protein deacetylation. Here we review experimental approaches that can be used in vitro and in vivo to study the role of acetylation in mitochondrial cell biology.</abstract><cop>United States</cop><pmid>19426866</pmid><doi>10.1016/S0076-6879(09)05008-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1557-7988 |
ispartof | Methods in enzymology, 2009, Vol.457, p.137-147 |
issn | 1557-7988 |
language | eng |
recordid | cdi_proquest_miscellaneous_67228167 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acetylation Animals Humans Immunoprecipitation Mitochondria - enzymology Mitochondrial Proteins - analysis Mitochondrial Proteins - genetics Mitochondrial Proteins - isolation & purification Mitochondrial Proteins - metabolism Plasmids - genetics Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Sirtuins - genetics Sirtuins - isolation & purification Sirtuins - metabolism |
title | Acetylation of mitochondrial proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylation%20of%20mitochondrial%20proteins&rft.jtitle=Methods%20in%20enzymology&rft.au=Hirschey,%20Matthew%20D&rft.date=2009&rft.volume=457&rft.spage=137&rft.epage=147&rft.pages=137-147&rft.eissn=1557-7988&rft_id=info:doi/10.1016/S0076-6879(09)05008-3&rft_dat=%3Cproquest_pubme%3E67228167%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67228167&rft_id=info:pmid/19426866&rfr_iscdi=true |