Correction of phase distortion in spatial heterodyne spectroscopy

The detailed analysis of measured interferograms generally requires phase correction. Phase-shift correction methods are commonly used and well documented for conventional Fourier-transform spectroscopy. However, measured interferograms can show additional phase errors, depending on the optical path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2004-12, Vol.43 (36), p.6680-6687
Hauptverfasser: Englert, Christoph R, Harlander, John M, Cardon, Joel G, Roesler, Fred L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detailed analysis of measured interferograms generally requires phase correction. Phase-shift correction methods are commonly used and well documented for conventional Fourier-transform spectroscopy. However, measured interferograms can show additional phase errors, depending on the optical path difference and signal frequency, which we call phase distortion. In spatial heterodyne spectroscopy they can be caused, for instance, by optical defects or image distortions, making them a characteristic of the individual spectrometer. They can generally be corrected without significant loss of the signal-to-noise ratio. We present a technique to measure phase distortion by using a measured example interferogram. We also describe a technique to correct for phase distortion and test its performance by using a simulation with a near-UV solar spectrum. We find that for our measured example interferogram the phase distortion is small and nearly frequency independent. Furthermore, we show that the presented phase-correction technique is especially effective for apodized interferograms.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.43.006680