What Is the Structure of Kaolinite? Reconciling Theory and Experiment

Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2009-05, Vol.113 (19), p.6756-6765
Hauptverfasser: White, Claire E, Provis, John L, Riley, Daniel P, Kearley, Gordon J, van Deventer, Jannie S. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6765
container_issue 19
container_start_page 6756
container_title The journal of physical chemistry. B
container_volume 113
creator White, Claire E
Provis, John L
Riley, Daniel P
Kearley, Gordon J
van Deventer, Jannie S. J
description Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correlation functionals in providing accurate structural information. A detailed evaluation of published experimental and computational structures is given, highlighting disagreements in space groups, hydroxyl bond lengths, and bond angles. A major aim of this paper is to resolve these discrepancies through computations. Computed structures are compared via total energy calculations and validated against experimental structures by comparing computed neutron diffractograms, and a final assessment is performed using vibrational spectra from inelastic neutron scattering. The density functional modeling is carried out at a sufficiently high level of theory to provide accurate structure predictions while keeping computational requirements low enough to enable the use of the structures in large-scale calculations. It is found that the best functional to use for efficient density functional modeling of kaolinite using the DMol3 software package is the BLYP functional. The computed structure for kaolinite at 0 K has C 1 symmetry, with the inner hydroxyl group angled slightly above the a,b plane and the inner surface hydroxyls aligned close to perpendicular to that plane.
doi_str_mv 10.1021/jp810448t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67212576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67212576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-3cfe847dbf54be4271d8fb45fa090efb86913cd2b7bea57142d7a539448b5a303</originalsourceid><addsrcrecordid>eNptkN1LwzAUxYMobk4f_AckLwo-VPPRNO2TyJgfOBB04mNJ2hvX0TU1ScH990Y29MWHy70HfhzuOQidUnJFCaPXqz6nJE3zsIfGVDCSxJH7uzujJBuhI-9XhDDB8uwQjWjB8zzjfIxm70sV8KPHYQn4NbihCoMDbA1-UrZtuibADX6BynZVE-UHXizBug1WXY1nXz24Zg1dOEYHRrUeTnZ7gt7uZovpQzJ_vn-c3s4TxSkPCa8M5KmstRGphpRJWudGp8IoUhAwOs8KyquaaalBCUlTVksleBGjaaE44RN0sfXtnf0cwIdy3fgK2lZ1YAdfZpJRJmQWwcstWDnrvQNT9vFT5TYlJeVPZ-VvZ5E925kOeg31H7krKQLnW0BVvlzZwXUx4z9G389Kcow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67212576</pqid></control><display><type>article</type><title>What Is the Structure of Kaolinite? Reconciling Theory and Experiment</title><source>American Chemical Society Journals</source><creator>White, Claire E ; Provis, John L ; Riley, Daniel P ; Kearley, Gordon J ; van Deventer, Jannie S. J</creator><creatorcontrib>White, Claire E ; Provis, John L ; Riley, Daniel P ; Kearley, Gordon J ; van Deventer, Jannie S. J</creatorcontrib><description>Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correlation functionals in providing accurate structural information. A detailed evaluation of published experimental and computational structures is given, highlighting disagreements in space groups, hydroxyl bond lengths, and bond angles. A major aim of this paper is to resolve these discrepancies through computations. Computed structures are compared via total energy calculations and validated against experimental structures by comparing computed neutron diffractograms, and a final assessment is performed using vibrational spectra from inelastic neutron scattering. The density functional modeling is carried out at a sufficiently high level of theory to provide accurate structure predictions while keeping computational requirements low enough to enable the use of the structures in large-scale calculations. It is found that the best functional to use for efficient density functional modeling of kaolinite using the DMol3 software package is the BLYP functional. The computed structure for kaolinite at 0 K has C 1 symmetry, with the inner hydroxyl group angled slightly above the a,b plane and the inner surface hydroxyls aligned close to perpendicular to that plane.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp810448t</identifier><identifier>PMID: 19388633</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><ispartof>The journal of physical chemistry. B, 2009-05, Vol.113 (19), p.6756-6765</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-3cfe847dbf54be4271d8fb45fa090efb86913cd2b7bea57142d7a539448b5a303</citedby><cites>FETCH-LOGICAL-a313t-3cfe847dbf54be4271d8fb45fa090efb86913cd2b7bea57142d7a539448b5a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp810448t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp810448t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19388633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Claire E</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Riley, Daniel P</creatorcontrib><creatorcontrib>Kearley, Gordon J</creatorcontrib><creatorcontrib>van Deventer, Jannie S. J</creatorcontrib><title>What Is the Structure of Kaolinite? Reconciling Theory and Experiment</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correlation functionals in providing accurate structural information. A detailed evaluation of published experimental and computational structures is given, highlighting disagreements in space groups, hydroxyl bond lengths, and bond angles. A major aim of this paper is to resolve these discrepancies through computations. Computed structures are compared via total energy calculations and validated against experimental structures by comparing computed neutron diffractograms, and a final assessment is performed using vibrational spectra from inelastic neutron scattering. The density functional modeling is carried out at a sufficiently high level of theory to provide accurate structure predictions while keeping computational requirements low enough to enable the use of the structures in large-scale calculations. It is found that the best functional to use for efficient density functional modeling of kaolinite using the DMol3 software package is the BLYP functional. The computed structure for kaolinite at 0 K has C 1 symmetry, with the inner hydroxyl group angled slightly above the a,b plane and the inner surface hydroxyls aligned close to perpendicular to that plane.</description><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkN1LwzAUxYMobk4f_AckLwo-VPPRNO2TyJgfOBB04mNJ2hvX0TU1ScH990Y29MWHy70HfhzuOQidUnJFCaPXqz6nJE3zsIfGVDCSxJH7uzujJBuhI-9XhDDB8uwQjWjB8zzjfIxm70sV8KPHYQn4NbihCoMDbA1-UrZtuibADX6BynZVE-UHXizBug1WXY1nXz24Zg1dOEYHRrUeTnZ7gt7uZovpQzJ_vn-c3s4TxSkPCa8M5KmstRGphpRJWudGp8IoUhAwOs8KyquaaalBCUlTVksleBGjaaE44RN0sfXtnf0cwIdy3fgK2lZ1YAdfZpJRJmQWwcstWDnrvQNT9vFT5TYlJeVPZ-VvZ5E925kOeg31H7krKQLnW0BVvlzZwXUx4z9G389Kcow</recordid><startdate>20090514</startdate><enddate>20090514</enddate><creator>White, Claire E</creator><creator>Provis, John L</creator><creator>Riley, Daniel P</creator><creator>Kearley, Gordon J</creator><creator>van Deventer, Jannie S. J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090514</creationdate><title>What Is the Structure of Kaolinite? Reconciling Theory and Experiment</title><author>White, Claire E ; Provis, John L ; Riley, Daniel P ; Kearley, Gordon J ; van Deventer, Jannie S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-3cfe847dbf54be4271d8fb45fa090efb86913cd2b7bea57142d7a539448b5a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B: Statistical Mechanics, Thermodynamics, Medium Effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Claire E</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Riley, Daniel P</creatorcontrib><creatorcontrib>Kearley, Gordon J</creatorcontrib><creatorcontrib>van Deventer, Jannie S. J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Claire E</au><au>Provis, John L</au><au>Riley, Daniel P</au><au>Kearley, Gordon J</au><au>van Deventer, Jannie S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Is the Structure of Kaolinite? Reconciling Theory and Experiment</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-05-14</date><risdate>2009</risdate><volume>113</volume><issue>19</issue><spage>6756</spage><epage>6765</epage><pages>6756-6765</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Density functional modeling of the crystalline layered aluminosilicate mineral kaolinite is conducted, first to reconcile discrepancies in the literature regarding the exact geometry of the inner and inner surface hydroxyl groups, and second to investigate the performance of selected exchange-correlation functionals in providing accurate structural information. A detailed evaluation of published experimental and computational structures is given, highlighting disagreements in space groups, hydroxyl bond lengths, and bond angles. A major aim of this paper is to resolve these discrepancies through computations. Computed structures are compared via total energy calculations and validated against experimental structures by comparing computed neutron diffractograms, and a final assessment is performed using vibrational spectra from inelastic neutron scattering. The density functional modeling is carried out at a sufficiently high level of theory to provide accurate structure predictions while keeping computational requirements low enough to enable the use of the structures in large-scale calculations. It is found that the best functional to use for efficient density functional modeling of kaolinite using the DMol3 software package is the BLYP functional. The computed structure for kaolinite at 0 K has C 1 symmetry, with the inner hydroxyl group angled slightly above the a,b plane and the inner surface hydroxyls aligned close to perpendicular to that plane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19388633</pmid><doi>10.1021/jp810448t</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2009-05, Vol.113 (19), p.6756-6765
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_67212576
source American Chemical Society Journals
subjects B: Statistical Mechanics, Thermodynamics, Medium Effects
title What Is the Structure of Kaolinite? Reconciling Theory and Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Is%20the%20Structure%20of%20Kaolinite?%20Reconciling%20Theory%20and%20Experiment&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=White,%20Claire%20E&rft.date=2009-05-14&rft.volume=113&rft.issue=19&rft.spage=6756&rft.epage=6765&rft.pages=6756-6765&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp810448t&rft_dat=%3Cproquest_cross%3E67212576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67212576&rft_id=info:pmid/19388633&rfr_iscdi=true