Retinal network adaptation to bright light requires tyrosinase
The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy muta...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2004-12, Vol.7 (12), p.1329-1336 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1336 |
---|---|
container_issue | 12 |
container_start_page | 1329 |
container_title | Nature neuroscience |
container_volume | 7 |
creator | Page-McCaw, Patrick S Chung, S Clare Muto, Akira Roeser, Tobias Staub, Wendy Finger-Baier, Karin C Korenbrot, Juan I Baier, Herwig |
description | The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish
sdy
gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the
sdy
mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in
sdy
. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in
sdy
mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry. |
doi_str_mv | 10.1038/nn1344 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67208656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185553503</galeid><sourcerecordid>A185553503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-e7716421f4ea1ac3a7cb6fb01f9b3e11bb0710e68ef87005f9b65839b7111aa63</originalsourceid><addsrcrecordid>eNqFkd9LHDEQx4NY9HraP0EWHyw-rM1sNj_2RRBp7YFQsPocsnuz1-hecpdkaf3vm-sdiPdSApMw85kvk_kS8gnoFVCmvjgHrK4PyAR4LUqQlTjMb9rIUlRcHJOPMT5TSiVXzRE5Bs5BNBWbkOsHTNaZoXCYfvvwUpi5WSWTrHdF8kUb7OJXKoZ_MeB6tAFjkV6Dj7kr4gn50Jsh4ununpKnb18fb7-X9z_uZrc392XHqUglSgmirqCv0YDpmJFdK_qWQt-0DAHalkqgKBT2SlLKc1pwxZpWAoAxgk3JxVZ3Ffx6xJj00sYOh8E49GPUQlZUCf5_EKSqeK1YBs_3wGc_hryJqCtZK6gaaDJ0tYUWZkBtXe9TMF0-c1zazjvsbc7fgOKcM043qpfvGjKT8E9amDFGPfv58J7djdrlbcaAvV4FuzThVQPVG1P11tQMnu1GHdslzt-wnYsZ-LwFYi65BYa3v-xJ_QUFw6bR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274812919</pqid></control><display><type>article</type><title>Retinal network adaptation to bright light requires tyrosinase</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Page-McCaw, Patrick S ; Chung, S Clare ; Muto, Akira ; Roeser, Tobias ; Staub, Wendy ; Finger-Baier, Karin C ; Korenbrot, Juan I ; Baier, Herwig</creator><creatorcontrib>Page-McCaw, Patrick S ; Chung, S Clare ; Muto, Akira ; Roeser, Tobias ; Staub, Wendy ; Finger-Baier, Karin C ; Korenbrot, Juan I ; Baier, Herwig</creatorcontrib><description>The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish
sdy
gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the
sdy
mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in
sdy
. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in
sdy
mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1344</identifier><identifier>PMID: 15516923</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adaptation, Ocular - genetics ; Amino Acid Sequence ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Danio rerio ; Freshwater ; Genetic aspects ; Molecular Sequence Data ; Monophenol Monooxygenase - biosynthesis ; Monophenol Monooxygenase - genetics ; Monophenol Monooxygenase - physiology ; Mutation, Missense ; Nerve Net - enzymology ; Neurobiology ; Neurosciences ; Photic Stimulation - methods ; Photoreceptors ; Physiological aspects ; Pigment Epithelium of Eye - enzymology ; Retina ; Visual pathways ; Zebrafish</subject><ispartof>Nature neuroscience, 2004-12, Vol.7 (12), p.1329-1336</ispartof><rights>Springer Nature America, Inc. 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-e7716421f4ea1ac3a7cb6fb01f9b3e11bb0710e68ef87005f9b65839b7111aa63</citedby><cites>FETCH-LOGICAL-c506t-e7716421f4ea1ac3a7cb6fb01f9b3e11bb0710e68ef87005f9b65839b7111aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1344$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1344$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15516923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Page-McCaw, Patrick S</creatorcontrib><creatorcontrib>Chung, S Clare</creatorcontrib><creatorcontrib>Muto, Akira</creatorcontrib><creatorcontrib>Roeser, Tobias</creatorcontrib><creatorcontrib>Staub, Wendy</creatorcontrib><creatorcontrib>Finger-Baier, Karin C</creatorcontrib><creatorcontrib>Korenbrot, Juan I</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><title>Retinal network adaptation to bright light requires tyrosinase</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish
sdy
gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the
sdy
mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in
sdy
. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in
sdy
mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.</description><subject>Adaptation, Ocular - genetics</subject><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Danio rerio</subject><subject>Freshwater</subject><subject>Genetic aspects</subject><subject>Molecular Sequence Data</subject><subject>Monophenol Monooxygenase - biosynthesis</subject><subject>Monophenol Monooxygenase - genetics</subject><subject>Monophenol Monooxygenase - physiology</subject><subject>Mutation, Missense</subject><subject>Nerve Net - enzymology</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Photic Stimulation - methods</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Pigment Epithelium of Eye - enzymology</subject><subject>Retina</subject><subject>Visual pathways</subject><subject>Zebrafish</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkd9LHDEQx4NY9HraP0EWHyw-rM1sNj_2RRBp7YFQsPocsnuz1-hecpdkaf3vm-sdiPdSApMw85kvk_kS8gnoFVCmvjgHrK4PyAR4LUqQlTjMb9rIUlRcHJOPMT5TSiVXzRE5Bs5BNBWbkOsHTNaZoXCYfvvwUpi5WSWTrHdF8kUb7OJXKoZ_MeB6tAFjkV6Dj7kr4gn50Jsh4ununpKnb18fb7-X9z_uZrc392XHqUglSgmirqCv0YDpmJFdK_qWQt-0DAHalkqgKBT2SlLKc1pwxZpWAoAxgk3JxVZ3Ffx6xJj00sYOh8E49GPUQlZUCf5_EKSqeK1YBs_3wGc_hryJqCtZK6gaaDJ0tYUWZkBtXe9TMF0-c1zazjvsbc7fgOKcM043qpfvGjKT8E9amDFGPfv58J7djdrlbcaAvV4FuzThVQPVG1P11tQMnu1GHdslzt-wnYsZ-LwFYi65BYa3v-xJ_QUFw6bR</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Page-McCaw, Patrick S</creator><creator>Chung, S Clare</creator><creator>Muto, Akira</creator><creator>Roeser, Tobias</creator><creator>Staub, Wendy</creator><creator>Finger-Baier, Karin C</creator><creator>Korenbrot, Juan I</creator><creator>Baier, Herwig</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Retinal network adaptation to bright light requires tyrosinase</title><author>Page-McCaw, Patrick S ; Chung, S Clare ; Muto, Akira ; Roeser, Tobias ; Staub, Wendy ; Finger-Baier, Karin C ; Korenbrot, Juan I ; Baier, Herwig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-e7716421f4ea1ac3a7cb6fb01f9b3e11bb0710e68ef87005f9b65839b7111aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptation, Ocular - genetics</topic><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Danio rerio</topic><topic>Freshwater</topic><topic>Genetic aspects</topic><topic>Molecular Sequence Data</topic><topic>Monophenol Monooxygenase - biosynthesis</topic><topic>Monophenol Monooxygenase - genetics</topic><topic>Monophenol Monooxygenase - physiology</topic><topic>Mutation, Missense</topic><topic>Nerve Net - enzymology</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Photic Stimulation - methods</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Pigment Epithelium of Eye - enzymology</topic><topic>Retina</topic><topic>Visual pathways</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page-McCaw, Patrick S</creatorcontrib><creatorcontrib>Chung, S Clare</creatorcontrib><creatorcontrib>Muto, Akira</creatorcontrib><creatorcontrib>Roeser, Tobias</creatorcontrib><creatorcontrib>Staub, Wendy</creatorcontrib><creatorcontrib>Finger-Baier, Karin C</creatorcontrib><creatorcontrib>Korenbrot, Juan I</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page-McCaw, Patrick S</au><au>Chung, S Clare</au><au>Muto, Akira</au><au>Roeser, Tobias</au><au>Staub, Wendy</au><au>Finger-Baier, Karin C</au><au>Korenbrot, Juan I</au><au>Baier, Herwig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal network adaptation to bright light requires tyrosinase</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>7</volume><issue>12</issue><spage>1329</spage><epage>1336</epage><pages>1329-1336</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish
sdy
gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the
sdy
mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in
sdy
. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in
sdy
mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>15516923</pmid><doi>10.1038/nn1344</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2004-12, Vol.7 (12), p.1329-1336 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_67208656 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Adaptation, Ocular - genetics Amino Acid Sequence Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Danio rerio Freshwater Genetic aspects Molecular Sequence Data Monophenol Monooxygenase - biosynthesis Monophenol Monooxygenase - genetics Monophenol Monooxygenase - physiology Mutation, Missense Nerve Net - enzymology Neurobiology Neurosciences Photic Stimulation - methods Photoreceptors Physiological aspects Pigment Epithelium of Eye - enzymology Retina Visual pathways Zebrafish |
title | Retinal network adaptation to bright light requires tyrosinase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20network%20adaptation%20to%20bright%20light%20requires%20tyrosinase&rft.jtitle=Nature%20neuroscience&rft.au=Page-McCaw,%20Patrick%20S&rft.date=2004-12-01&rft.volume=7&rft.issue=12&rft.spage=1329&rft.epage=1336&rft.pages=1329-1336&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1344&rft_dat=%3Cgale_proqu%3EA185553503%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274812919&rft_id=info:pmid/15516923&rft_galeid=A185553503&rfr_iscdi=true |