Lens alpha-crystallin and hypericin: a photophysical mechanism explains observed lens
Determining whether alpha-crystallin (the major lens protein) affects the photophysics of hypericin, a photosensitizing agent found in various plants, such as St. John's Wort, is important. Hypericin shows promise in cancer and human immunodeficiency virus therapy but may harm individuals takin...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2004-11, Vol.80 (3), p.444-449 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining whether alpha-crystallin (the major lens protein) affects the photophysics of hypericin, a photosensitizing agent found in various plants, such as St. John's Wort, is important. Hypericin shows promise in cancer and human immunodeficiency virus therapy but may harm individuals taking St. John's Wort extracts (for mild to moderate depression). Hypericin causes hypericism, which is characterized by cellular damage in light-exposed areas. Ocular tissues are at risk for photosensitized damage; thus, we investigated the effects on hypericin photophysics by alpha-crystallin. We measured the transient absorption spectra and the 1270 nm luminescence of singlet (1Deltag) oxygen produced from hypericin in the presence of alpha-crystallin. alpha-Crystallin complexes hypericin, extending the lifetime of its triplet excited state; the Stern-Volmer slope is negative, but not linear, after a saturation curve. Damage to the lens protein by hypericin is known to occur via singlet oxygen, which oxidizes methionine, tryptophan and histidine residues. Binding to alpha-crystallin does not inhibit singlet oxygen formation by hypericin. alpha-Crystallin reacts with singlet oxygen with a rate constant of 1.3 x 10(8) M(-1) s(-1). Thus, we anticipate that hypericin will be an effective photosensitizer in the lens. |
---|---|
ISSN: | 0031-8655 |