Evolution of the Rembrandt Impact Basin on Mercury

MESSENGER's second Mercury flyby revealed a approximately 715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-05, Vol.324 (5927), p.618-621
Hauptverfasser: Watters, Thomas R, Head, James W, Solomon, Sean C, Robinson, Mark S, Chapman, Clark R, Denevi, Brett W, Fassett, Caleb I, Murchie, Scott L, Strom, Robert G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 5927
container_start_page 618
container_title Science (American Association for the Advancement of Science)
container_volume 324
creator Watters, Thomas R
Head, James W
Solomon, Sean C
Robinson, Mark S
Chapman, Clark R
Denevi, Brett W
Fassett, Caleb I
Murchie, Scott L
Strom, Robert G
description MESSENGER's second Mercury flyby revealed a approximately 715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.
doi_str_mv 10.1126/science.1172109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67193565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20493838</jstor_id><sourcerecordid>20493838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a579t-ce09d9a0342053ce2bb50fea864603351af2d9a1e216b23915938791f45939753</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVoSTabnntqawLpzcmMZEnWsQ1JGkgptM1ZyFq59WJbW8ku5L_vhDUN5BIE-uD95jGjx9hbhHNEri6y78LoAz00RzAHbEW7LA0H8YqtAIQqa9DyiB3nvAUgzYhDdoSmAo1Grxi_-hv7eeriWMS2mH6H4nsYmuTGzVTcDjvnp-Kzyx2pY_E1JD-nhxP2unV9Dm-Wc83ur69-Xn4p777d3F5-uiud1GYqfQCzMQ5ExUEKH3jTSGiDq1WlQAiJruWkY-CoGi4MUmu1NthWdDFaijX7uPfdpfhnDnmyQ5d96Hs3hjhnq2gCIdXLoKg055XRL4LUqKqNQQJPn4HbOKeRprUchTR1zR-hiz3kU8w5hdbuUje49GAR7GM6dknHLulQxfvFdm6GsHnilzgIOFsAl73rW8rBd_k_x1FW1J0i7t2e2-YppicdKvpDWmv2Ya-3Llr3K5HH_Q8OKAAVl7xW4h_pXafP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213598821</pqid></control><display><type>article</type><title>Evolution of the Rembrandt Impact Basin on Mercury</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Watters, Thomas R ; Head, James W ; Solomon, Sean C ; Robinson, Mark S ; Chapman, Clark R ; Denevi, Brett W ; Fassett, Caleb I ; Murchie, Scott L ; Strom, Robert G</creator><creatorcontrib>Watters, Thomas R ; Head, James W ; Solomon, Sean C ; Robinson, Mark S ; Chapman, Clark R ; Denevi, Brett W ; Fassett, Caleb I ; Murchie, Scott L ; Strom, Robert G</creatorcontrib><description>MESSENGER's second Mercury flyby revealed a approximately 715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1172109</identifier><identifier>PMID: 19407197</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Astronomy ; Earth, ocean, space ; Ejecta ; Exact sciences and technology ; Geophysics ; Impact basins ; Impact craters ; Massifs ; Mercury ; Mosaic ; Planetary, asteroid, and satellite characteristics and properties ; Planets, their satellites and rings. Asteroids ; Ridges ; Scarps ; Solar system ; Spectral reflectance ; Surface features, cratering, and topography ; Tectonic landforms</subject><ispartof>Science (American Association for the Advancement of Science), 2009-05, Vol.324 (5927), p.618-621</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a579t-ce09d9a0342053ce2bb50fea864603351af2d9a1e216b23915938791f45939753</citedby><cites>FETCH-LOGICAL-a579t-ce09d9a0342053ce2bb50fea864603351af2d9a1e216b23915938791f45939753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20493838$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20493838$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21549136$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19407197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watters, Thomas R</creatorcontrib><creatorcontrib>Head, James W</creatorcontrib><creatorcontrib>Solomon, Sean C</creatorcontrib><creatorcontrib>Robinson, Mark S</creatorcontrib><creatorcontrib>Chapman, Clark R</creatorcontrib><creatorcontrib>Denevi, Brett W</creatorcontrib><creatorcontrib>Fassett, Caleb I</creatorcontrib><creatorcontrib>Murchie, Scott L</creatorcontrib><creatorcontrib>Strom, Robert G</creatorcontrib><title>Evolution of the Rembrandt Impact Basin on Mercury</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>MESSENGER's second Mercury flyby revealed a approximately 715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Ejecta</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Impact basins</subject><subject>Impact craters</subject><subject>Massifs</subject><subject>Mercury</subject><subject>Mosaic</subject><subject>Planetary, asteroid, and satellite characteristics and properties</subject><subject>Planets, their satellites and rings. Asteroids</subject><subject>Ridges</subject><subject>Scarps</subject><subject>Solar system</subject><subject>Spectral reflectance</subject><subject>Surface features, cratering, and topography</subject><subject>Tectonic landforms</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxUVoSTabnntqawLpzcmMZEnWsQ1JGkgptM1ZyFq59WJbW8ku5L_vhDUN5BIE-uD95jGjx9hbhHNEri6y78LoAz00RzAHbEW7LA0H8YqtAIQqa9DyiB3nvAUgzYhDdoSmAo1Grxi_-hv7eeriWMS2mH6H4nsYmuTGzVTcDjvnp-Kzyx2pY_E1JD-nhxP2unV9Dm-Wc83ur69-Xn4p777d3F5-uiud1GYqfQCzMQ5ExUEKH3jTSGiDq1WlQAiJruWkY-CoGi4MUmu1NthWdDFaijX7uPfdpfhnDnmyQ5d96Hs3hjhnq2gCIdXLoKg055XRL4LUqKqNQQJPn4HbOKeRprUchTR1zR-hiz3kU8w5hdbuUje49GAR7GM6dknHLulQxfvFdm6GsHnilzgIOFsAl73rW8rBd_k_x1FW1J0i7t2e2-YppicdKvpDWmv2Ya-3Llr3K5HH_Q8OKAAVl7xW4h_pXafP</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Watters, Thomas R</creator><creator>Head, James W</creator><creator>Solomon, Sean C</creator><creator>Robinson, Mark S</creator><creator>Chapman, Clark R</creator><creator>Denevi, Brett W</creator><creator>Fassett, Caleb I</creator><creator>Murchie, Scott L</creator><creator>Strom, Robert G</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TG</scope><scope>KL.</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>Evolution of the Rembrandt Impact Basin on Mercury</title><author>Watters, Thomas R ; Head, James W ; Solomon, Sean C ; Robinson, Mark S ; Chapman, Clark R ; Denevi, Brett W ; Fassett, Caleb I ; Murchie, Scott L ; Strom, Robert G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a579t-ce09d9a0342053ce2bb50fea864603351af2d9a1e216b23915938791f45939753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Ejecta</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Impact basins</topic><topic>Impact craters</topic><topic>Massifs</topic><topic>Mercury</topic><topic>Mosaic</topic><topic>Planetary, asteroid, and satellite characteristics and properties</topic><topic>Planets, their satellites and rings. Asteroids</topic><topic>Ridges</topic><topic>Scarps</topic><topic>Solar system</topic><topic>Spectral reflectance</topic><topic>Surface features, cratering, and topography</topic><topic>Tectonic landforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watters, Thomas R</creatorcontrib><creatorcontrib>Head, James W</creatorcontrib><creatorcontrib>Solomon, Sean C</creatorcontrib><creatorcontrib>Robinson, Mark S</creatorcontrib><creatorcontrib>Chapman, Clark R</creatorcontrib><creatorcontrib>Denevi, Brett W</creatorcontrib><creatorcontrib>Fassett, Caleb I</creatorcontrib><creatorcontrib>Murchie, Scott L</creatorcontrib><creatorcontrib>Strom, Robert G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watters, Thomas R</au><au>Head, James W</au><au>Solomon, Sean C</au><au>Robinson, Mark S</au><au>Chapman, Clark R</au><au>Denevi, Brett W</au><au>Fassett, Caleb I</au><au>Murchie, Scott L</au><au>Strom, Robert G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Rembrandt Impact Basin on Mercury</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>324</volume><issue>5927</issue><spage>618</spage><epage>621</epage><pages>618-621</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>MESSENGER's second Mercury flyby revealed a approximately 715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19407197</pmid><doi>10.1126/science.1172109</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-05, Vol.324 (5927), p.618-621
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_67193565
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Astronomy
Earth, ocean, space
Ejecta
Exact sciences and technology
Geophysics
Impact basins
Impact craters
Massifs
Mercury
Mosaic
Planetary, asteroid, and satellite characteristics and properties
Planets, their satellites and rings. Asteroids
Ridges
Scarps
Solar system
Spectral reflectance
Surface features, cratering, and topography
Tectonic landforms
title Evolution of the Rembrandt Impact Basin on Mercury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Rembrandt%20Impact%20Basin%20on%20Mercury&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Watters,%20Thomas%20R&rft.date=2009-05-01&rft.volume=324&rft.issue=5927&rft.spage=618&rft.epage=621&rft.pages=618-621&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1172109&rft_dat=%3Cjstor_proqu%3E20493838%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213598821&rft_id=info:pmid/19407197&rft_jstor_id=20493838&rfr_iscdi=true