The HSP90-SGT1 chaperone complex for NLR immune sensors
The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly fold...
Gespeichert in:
Veröffentlicht in: | Annual review of plant biology 2009-01, Vol.60 (1), p.139-164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Annual review of plant biology |
container_volume | 60 |
creator | Shirasu, Ken |
description | The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals. |
doi_str_mv | 10.1146/annurev.arplant.59.032607.092906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67188394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67188394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_giwexMuuk2STTW5K0VYoKraeQ8zO0pb9MumK_ntXuyB4mmF4eGfmIeSKQkJpKq9tXXcePxLr29LWu0ToBDiTkCWgmQZ5QMZUpCJmlPHD357HAkCNyEkIW4B-wOgxGVENNOWpHJNstcZovnzWEC9nKxq5tW3RNzVGrqnaEj-jovHR4-Il2lRV148D1qHx4ZQcFbYMeDbUCXm9v1tN5_HiafYwvV3ELmVsFxcKtSoQVM6lzq3OnMsVV5lEx3mhKWgpucMcRGpzgQigLRVK5jJHQQH5hFzuc1vfvHcYdqbaBIdl_z42XTAyo0pxnfbgxT9w23S-7m8zjIGCLJVZD93sIeebEDwWpvWbyvovQ8H8GDaDYTMYNkKbvWGzN9xHnA97urcK87-AQSn_BsA0erA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220807467</pqid></control><display><type>article</type><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Shirasu, Ken</creator><creatorcontrib>Shirasu, Ken</creatorcontrib><description>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</description><identifier>ISSN: 1543-5008</identifier><identifier>EISSN: 1545-2123</identifier><identifier>DOI: 10.1146/annurev.arplant.59.032607.092906</identifier><identifier>PMID: 19014346</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Cells ; Evolution, Molecular ; Flowers & plants ; Host-Pathogen Interactions ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Immunity, Innate ; Molecular Chaperones - genetics ; Molecular Chaperones - immunology ; Nod Signaling Adaptor Proteins - genetics ; Nod Signaling Adaptor Proteins - immunology ; Pathogens ; Plant biology ; Plant Proteins - chemistry ; Plant Proteins - immunology ; Plant Proteins - metabolism ; Plants - chemistry ; Plants - genetics ; Plants - immunology ; Plants - metabolism ; Protein folding ; Proteins ; Sensors ; Signal transduction ; Translocation</subject><ispartof>Annual review of plant biology, 2009-01, Vol.60 (1), p.139-164</ispartof><rights>Copyright Annual Reviews, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</citedby><cites>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4168,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19014346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirasu, Ken</creatorcontrib><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><title>Annual review of plant biology</title><addtitle>Annu Rev Plant Biol</addtitle><description>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</description><subject>Cells</subject><subject>Evolution, Molecular</subject><subject>Flowers & plants</subject><subject>Host-Pathogen Interactions</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Immunity, Innate</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - immunology</subject><subject>Nod Signaling Adaptor Proteins - genetics</subject><subject>Nod Signaling Adaptor Proteins - immunology</subject><subject>Pathogens</subject><subject>Plant biology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - immunology</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - chemistry</subject><subject>Plants - genetics</subject><subject>Plants - immunology</subject><subject>Plants - metabolism</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Translocation</subject><issn>1543-5008</issn><issn>1545-2123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlb_giwexMuuk2STTW5K0VYoKraeQ8zO0pb9MumK_ntXuyB4mmF4eGfmIeSKQkJpKq9tXXcePxLr29LWu0ToBDiTkCWgmQZ5QMZUpCJmlPHD357HAkCNyEkIW4B-wOgxGVENNOWpHJNstcZovnzWEC9nKxq5tW3RNzVGrqnaEj-jovHR4-Il2lRV148D1qHx4ZQcFbYMeDbUCXm9v1tN5_HiafYwvV3ELmVsFxcKtSoQVM6lzq3OnMsVV5lEx3mhKWgpucMcRGpzgQigLRVK5jJHQQH5hFzuc1vfvHcYdqbaBIdl_z42XTAyo0pxnfbgxT9w23S-7m8zjIGCLJVZD93sIeebEDwWpvWbyvovQ8H8GDaDYTMYNkKbvWGzN9xHnA97urcK87-AQSn_BsA0erA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Shirasu, Ken</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><author>Shirasu, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cells</topic><topic>Evolution, Molecular</topic><topic>Flowers & plants</topic><topic>Host-Pathogen Interactions</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Immunity, Innate</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - immunology</topic><topic>Nod Signaling Adaptor Proteins - genetics</topic><topic>Nod Signaling Adaptor Proteins - immunology</topic><topic>Pathogens</topic><topic>Plant biology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - immunology</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - chemistry</topic><topic>Plants - genetics</topic><topic>Plants - immunology</topic><topic>Plants - metabolism</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirasu, Ken</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirasu, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The HSP90-SGT1 chaperone complex for NLR immune sensors</atitle><jtitle>Annual review of plant biology</jtitle><addtitle>Annu Rev Plant Biol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>60</volume><issue>1</issue><spage>139</spage><epage>164</epage><pages>139-164</pages><issn>1543-5008</issn><eissn>1545-2123</eissn><abstract>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>19014346</pmid><doi>10.1146/annurev.arplant.59.032607.092906</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-5008 |
ispartof | Annual review of plant biology, 2009-01, Vol.60 (1), p.139-164 |
issn | 1543-5008 1545-2123 |
language | eng |
recordid | cdi_proquest_miscellaneous_67188394 |
source | Annual Reviews Complete A-Z List; MEDLINE |
subjects | Cells Evolution, Molecular Flowers & plants Host-Pathogen Interactions HSP90 Heat-Shock Proteins - genetics HSP90 Heat-Shock Proteins - metabolism Immunity, Innate Molecular Chaperones - genetics Molecular Chaperones - immunology Nod Signaling Adaptor Proteins - genetics Nod Signaling Adaptor Proteins - immunology Pathogens Plant biology Plant Proteins - chemistry Plant Proteins - immunology Plant Proteins - metabolism Plants - chemistry Plants - genetics Plants - immunology Plants - metabolism Protein folding Proteins Sensors Signal transduction Translocation |
title | The HSP90-SGT1 chaperone complex for NLR immune sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20HSP90-SGT1%20chaperone%20complex%20for%20NLR%20immune%20sensors&rft.jtitle=Annual%20review%20of%20plant%20biology&rft.au=Shirasu,%20Ken&rft.date=2009-01-01&rft.volume=60&rft.issue=1&rft.spage=139&rft.epage=164&rft.pages=139-164&rft.issn=1543-5008&rft.eissn=1545-2123&rft_id=info:doi/10.1146/annurev.arplant.59.032607.092906&rft_dat=%3Cproquest_cross%3E67188394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220807467&rft_id=info:pmid/19014346&rfr_iscdi=true |