The HSP90-SGT1 chaperone complex for NLR immune sensors

The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly fold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of plant biology 2009-01, Vol.60 (1), p.139-164
1. Verfasser: Shirasu, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 139
container_title Annual review of plant biology
container_volume 60
creator Shirasu, Ken
description The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.
doi_str_mv 10.1146/annurev.arplant.59.032607.092906
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67188394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67188394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_giwexMuuk2STTW5K0VYoKraeQ8zO0pb9MumK_ntXuyB4mmF4eGfmIeSKQkJpKq9tXXcePxLr29LWu0ToBDiTkCWgmQZ5QMZUpCJmlPHD357HAkCNyEkIW4B-wOgxGVENNOWpHJNstcZovnzWEC9nKxq5tW3RNzVGrqnaEj-jovHR4-Il2lRV148D1qHx4ZQcFbYMeDbUCXm9v1tN5_HiafYwvV3ELmVsFxcKtSoQVM6lzq3OnMsVV5lEx3mhKWgpucMcRGpzgQigLRVK5jJHQQH5hFzuc1vfvHcYdqbaBIdl_z42XTAyo0pxnfbgxT9w23S-7m8zjIGCLJVZD93sIeebEDwWpvWbyvovQ8H8GDaDYTMYNkKbvWGzN9xHnA97urcK87-AQSn_BsA0erA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220807467</pqid></control><display><type>article</type><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Shirasu, Ken</creator><creatorcontrib>Shirasu, Ken</creatorcontrib><description>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</description><identifier>ISSN: 1543-5008</identifier><identifier>EISSN: 1545-2123</identifier><identifier>DOI: 10.1146/annurev.arplant.59.032607.092906</identifier><identifier>PMID: 19014346</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Cells ; Evolution, Molecular ; Flowers &amp; plants ; Host-Pathogen Interactions ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Immunity, Innate ; Molecular Chaperones - genetics ; Molecular Chaperones - immunology ; Nod Signaling Adaptor Proteins - genetics ; Nod Signaling Adaptor Proteins - immunology ; Pathogens ; Plant biology ; Plant Proteins - chemistry ; Plant Proteins - immunology ; Plant Proteins - metabolism ; Plants - chemistry ; Plants - genetics ; Plants - immunology ; Plants - metabolism ; Protein folding ; Proteins ; Sensors ; Signal transduction ; Translocation</subject><ispartof>Annual review of plant biology, 2009-01, Vol.60 (1), p.139-164</ispartof><rights>Copyright Annual Reviews, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</citedby><cites>FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4168,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19014346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirasu, Ken</creatorcontrib><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><title>Annual review of plant biology</title><addtitle>Annu Rev Plant Biol</addtitle><description>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</description><subject>Cells</subject><subject>Evolution, Molecular</subject><subject>Flowers &amp; plants</subject><subject>Host-Pathogen Interactions</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Immunity, Innate</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - immunology</subject><subject>Nod Signaling Adaptor Proteins - genetics</subject><subject>Nod Signaling Adaptor Proteins - immunology</subject><subject>Pathogens</subject><subject>Plant biology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - immunology</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - chemistry</subject><subject>Plants - genetics</subject><subject>Plants - immunology</subject><subject>Plants - metabolism</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Translocation</subject><issn>1543-5008</issn><issn>1545-2123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlb_giwexMuuk2STTW5K0VYoKraeQ8zO0pb9MumK_ntXuyB4mmF4eGfmIeSKQkJpKq9tXXcePxLr29LWu0ToBDiTkCWgmQZ5QMZUpCJmlPHD357HAkCNyEkIW4B-wOgxGVENNOWpHJNstcZovnzWEC9nKxq5tW3RNzVGrqnaEj-jovHR4-Il2lRV148D1qHx4ZQcFbYMeDbUCXm9v1tN5_HiafYwvV3ELmVsFxcKtSoQVM6lzq3OnMsVV5lEx3mhKWgpucMcRGpzgQigLRVK5jJHQQH5hFzuc1vfvHcYdqbaBIdl_z42XTAyo0pxnfbgxT9w23S-7m8zjIGCLJVZD93sIeebEDwWpvWbyvovQ8H8GDaDYTMYNkKbvWGzN9xHnA97urcK87-AQSn_BsA0erA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Shirasu, Ken</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>The HSP90-SGT1 chaperone complex for NLR immune sensors</title><author>Shirasu, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f8e98fe08d369da97ccd83876ec33f9109663ced054ad5ee009a1586d6de510e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cells</topic><topic>Evolution, Molecular</topic><topic>Flowers &amp; plants</topic><topic>Host-Pathogen Interactions</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Immunity, Innate</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - immunology</topic><topic>Nod Signaling Adaptor Proteins - genetics</topic><topic>Nod Signaling Adaptor Proteins - immunology</topic><topic>Pathogens</topic><topic>Plant biology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - immunology</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - chemistry</topic><topic>Plants - genetics</topic><topic>Plants - immunology</topic><topic>Plants - metabolism</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirasu, Ken</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirasu, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The HSP90-SGT1 chaperone complex for NLR immune sensors</atitle><jtitle>Annual review of plant biology</jtitle><addtitle>Annu Rev Plant Biol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>60</volume><issue>1</issue><spage>139</spage><epage>164</epage><pages>139-164</pages><issn>1543-5008</issn><eissn>1545-2123</eissn><abstract>The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>19014346</pmid><doi>10.1146/annurev.arplant.59.032607.092906</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1543-5008
ispartof Annual review of plant biology, 2009-01, Vol.60 (1), p.139-164
issn 1543-5008
1545-2123
language eng
recordid cdi_proquest_miscellaneous_67188394
source Annual Reviews Complete A-Z List; MEDLINE
subjects Cells
Evolution, Molecular
Flowers & plants
Host-Pathogen Interactions
HSP90 Heat-Shock Proteins - genetics
HSP90 Heat-Shock Proteins - metabolism
Immunity, Innate
Molecular Chaperones - genetics
Molecular Chaperones - immunology
Nod Signaling Adaptor Proteins - genetics
Nod Signaling Adaptor Proteins - immunology
Pathogens
Plant biology
Plant Proteins - chemistry
Plant Proteins - immunology
Plant Proteins - metabolism
Plants - chemistry
Plants - genetics
Plants - immunology
Plants - metabolism
Protein folding
Proteins
Sensors
Signal transduction
Translocation
title The HSP90-SGT1 chaperone complex for NLR immune sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20HSP90-SGT1%20chaperone%20complex%20for%20NLR%20immune%20sensors&rft.jtitle=Annual%20review%20of%20plant%20biology&rft.au=Shirasu,%20Ken&rft.date=2009-01-01&rft.volume=60&rft.issue=1&rft.spage=139&rft.epage=164&rft.pages=139-164&rft.issn=1543-5008&rft.eissn=1545-2123&rft_id=info:doi/10.1146/annurev.arplant.59.032607.092906&rft_dat=%3Cproquest_cross%3E67188394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220807467&rft_id=info:pmid/19014346&rfr_iscdi=true