New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks

Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-12, Vol.23 (4), p.1283-1298
Hauptverfasser: Schmitt, Stephan, Evers, Jan Felix, Duch, Carsten, Scholz, Michael, Obermayer, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1298
container_issue 4
container_start_page 1283
container_title NeuroImage (Orlando, Fla.)
container_volume 23
creator Schmitt, Stephan
Evers, Jan Felix
Duch, Carsten
Scholz, Michael
Obermayer, Klaus
description Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 μm and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons.
doi_str_mv 10.1016/j.neuroimage.2004.06.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67188363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811904004550</els_id><sourcerecordid>3246193601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-900be5a388f010c6b13e24067226c517a3db0198f6631b987d9192238c1f85c3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2qVfnTfgVkCam3pDNx7NhHCrRUQnDhjJU4E8iyiRfbacW3r5ddCakXTjOH3_M8v8cYRygRUH1flTMtwY9T-0BlBVCXoEqomw_sEMHIwsim-rjdpSg0ojlgRzGuAMBgrT-zA5RSGzDikN3f0F8-UXr0feSDDzw9End-2iyJQtHGOMZEPRfFBQ_k_BxTWFwa_cz9wF9NzFkX_JRF8-Bdu-avrnhMrXuKX9inoV1H-rqfx-zu5-Xd-VVxffvr9_nZdeFqVafCAHQkW6H1AAhOdSioqkE1VaWcxKYVfQdo9KCUwM7opjdoqkpoh4OWThyzb7tnN8E_LxSTncboaL1uZ_JLtKpBrYUSGTz9D1z5JczZmkUJTVUr0FtK7ygXfIyBBrsJ-VfhxSLYbQF2Zd8KsNsCLCibC8jSk_2BpZuofxPuE8_Ajx1AOY4_IwUb3Uizo37MASfb-_H9K_8AN-ibZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507246083</pqid></control><display><type>article</type><title>New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schmitt, Stephan ; Evers, Jan Felix ; Duch, Carsten ; Scholz, Michael ; Obermayer, Klaus</creator><creatorcontrib>Schmitt, Stephan ; Evers, Jan Felix ; Duch, Carsten ; Scholz, Michael ; Obermayer, Klaus</creatorcontrib><description>Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 μm and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2004.06.047</identifier><identifier>PMID: 15589093</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active contour models ; Algorithms ; Animals ; Astrocytes - diagnostic imaging ; Automation ; Dendrites - diagnostic imaging ; Generalized cylinders ; Geodesic ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Interneurons - diagnostic imaging ; Laser scanning confocal microscopy ; Mathematical Computing ; Methods ; Microscopy, Confocal ; Morphology ; Motor Neurons - diagnostic imaging ; Nerve Net - anatomy &amp; histology ; Neural Networks (Computer) ; Neuron reconstruction ; Neurons ; Neurons - ultrastructure ; Psychodidae ; Software ; Ultrasonography</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-12, Vol.23 (4), p.1283-1298</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-900be5a388f010c6b13e24067226c517a3db0198f6631b987d9192238c1f85c3</citedby><cites>FETCH-LOGICAL-c464t-900be5a388f010c6b13e24067226c517a3db0198f6631b987d9192238c1f85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811904004550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15589093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Stephan</creatorcontrib><creatorcontrib>Evers, Jan Felix</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><creatorcontrib>Scholz, Michael</creatorcontrib><creatorcontrib>Obermayer, Klaus</creatorcontrib><title>New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 μm and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons.</description><subject>Active contour models</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Astrocytes - diagnostic imaging</subject><subject>Automation</subject><subject>Dendrites - diagnostic imaging</subject><subject>Generalized cylinders</subject><subject>Geodesic</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Interneurons - diagnostic imaging</subject><subject>Laser scanning confocal microscopy</subject><subject>Mathematical Computing</subject><subject>Methods</subject><subject>Microscopy, Confocal</subject><subject>Morphology</subject><subject>Motor Neurons - diagnostic imaging</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Neural Networks (Computer)</subject><subject>Neuron reconstruction</subject><subject>Neurons</subject><subject>Neurons - ultrastructure</subject><subject>Psychodidae</subject><subject>Software</subject><subject>Ultrasonography</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9P3DAQxa2qVfnTfgVkCam3pDNx7NhHCrRUQnDhjJU4E8iyiRfbacW3r5ddCakXTjOH3_M8v8cYRygRUH1flTMtwY9T-0BlBVCXoEqomw_sEMHIwsim-rjdpSg0ojlgRzGuAMBgrT-zA5RSGzDikN3f0F8-UXr0feSDDzw9End-2iyJQtHGOMZEPRfFBQ_k_BxTWFwa_cz9wF9NzFkX_JRF8-Bdu-avrnhMrXuKX9inoV1H-rqfx-zu5-Xd-VVxffvr9_nZdeFqVafCAHQkW6H1AAhOdSioqkE1VaWcxKYVfQdo9KCUwM7opjdoqkpoh4OWThyzb7tnN8E_LxSTncboaL1uZ_JLtKpBrYUSGTz9D1z5JczZmkUJTVUr0FtK7ygXfIyBBrsJ-VfhxSLYbQF2Zd8KsNsCLCibC8jSk_2BpZuofxPuE8_Ajx1AOY4_IwUb3Uizo37MASfb-_H9K_8AN-ibZA</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Schmitt, Stephan</creator><creator>Evers, Jan Felix</creator><creator>Duch, Carsten</creator><creator>Scholz, Michael</creator><creator>Obermayer, Klaus</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks</title><author>Schmitt, Stephan ; Evers, Jan Felix ; Duch, Carsten ; Scholz, Michael ; Obermayer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-900be5a388f010c6b13e24067226c517a3db0198f6631b987d9192238c1f85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active contour models</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Astrocytes - diagnostic imaging</topic><topic>Automation</topic><topic>Dendrites - diagnostic imaging</topic><topic>Generalized cylinders</topic><topic>Geodesic</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Interneurons - diagnostic imaging</topic><topic>Laser scanning confocal microscopy</topic><topic>Mathematical Computing</topic><topic>Methods</topic><topic>Microscopy, Confocal</topic><topic>Morphology</topic><topic>Motor Neurons - diagnostic imaging</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Neural Networks (Computer)</topic><topic>Neuron reconstruction</topic><topic>Neurons</topic><topic>Neurons - ultrastructure</topic><topic>Psychodidae</topic><topic>Software</topic><topic>Ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Stephan</creatorcontrib><creatorcontrib>Evers, Jan Felix</creatorcontrib><creatorcontrib>Duch, Carsten</creatorcontrib><creatorcontrib>Scholz, Michael</creatorcontrib><creatorcontrib>Obermayer, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Stephan</au><au>Evers, Jan Felix</au><au>Duch, Carsten</au><au>Scholz, Michael</au><au>Obermayer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>23</volume><issue>4</issue><spage>1283</spage><epage>1298</epage><pages>1283-1298</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 μm and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15589093</pmid><doi>10.1016/j.neuroimage.2004.06.047</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004-12, Vol.23 (4), p.1283-1298
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_67188363
source MEDLINE; Elsevier ScienceDirect Journals
subjects Active contour models
Algorithms
Animals
Astrocytes - diagnostic imaging
Automation
Dendrites - diagnostic imaging
Generalized cylinders
Geodesic
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Interneurons - diagnostic imaging
Laser scanning confocal microscopy
Mathematical Computing
Methods
Microscopy, Confocal
Morphology
Motor Neurons - diagnostic imaging
Nerve Net - anatomy & histology
Neural Networks (Computer)
Neuron reconstruction
Neurons
Neurons - ultrastructure
Psychodidae
Software
Ultrasonography
title New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20methods%20for%20the%20computer-assisted%203-D%20reconstruction%20of%20neurons%20from%20confocal%20image%20stacks&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Schmitt,%20Stephan&rft.date=2004-12-01&rft.volume=23&rft.issue=4&rft.spage=1283&rft.epage=1298&rft.pages=1283-1298&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2004.06.047&rft_dat=%3Cproquest_cross%3E3246193601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507246083&rft_id=info:pmid/15589093&rft_els_id=S1053811904004550&rfr_iscdi=true