Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality

The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-12, Vol.279 (53), p.55715-55721
Hauptverfasser: Blume, Astrid, Benie, Andrew J, Stolz, Florian, Schmidt, Richard R, Reutter, Werner, Hinderlich, Stephan, Peters, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55721
container_issue 53
container_start_page 55715
container_title The Journal of biological chemistry
container_volume 279
creator Blume, Astrid
Benie, Andrew J
Stolz, Florian
Schmidt, Richard R
Reutter, Werner
Hinderlich, Stephan
Peters, Thomas
description The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.
doi_str_mv 10.1074/jbc.M410238200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67188182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67188182</sourcerecordid><originalsourceid>FETCH-LOGICAL-p209t-a92c868d0d45c3af74b5f3e496d007c70aa7b991e9254cbd9d04ea049e1157a53</originalsourceid><addsrcrecordid>eNpFUDtPwzAQ9gCipbAyIk9sKXbiPMxWFSiVaEGIztHFubQuiRPiBCn9QfxOUmjFLae7-x6nj5ArzsacheJ2m6jxQnDmepHL2AkZMuZyR7p-NCDn1m5ZX0LyMzLgvpBRGIgh-Z5uoAbVYK130OjS0DKjuV6DSWmiTarNmjYlbTbYj1lr1B4DOf3AjqLZdQVSbX7PVkOuFQWl98zSdqbfWm1p0tHl4u2Ozsd0br7QNr360WlPXN2_OrNcLSeKug5WusAaLNJ_M910F-Q0g9zi5aGPyOrx4X365Dy_zObTybNTuUw2DkhXRUGUslT4yoMsFImfeShkkDIWqpABhImUHPtQhEpSmTKB0IeCnPsh-N6I3PzpVnX52fa_xoW2CvMcDJatjYOQRxGP3B54fQC2SYFpXNW6gLqLj8l6P7STe2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67188182</pqid></control><display><type>article</type><title>Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Blume, Astrid ; Benie, Andrew J ; Stolz, Florian ; Schmidt, Richard R ; Reutter, Werner ; Hinderlich, Stephan ; Peters, Thomas</creator><creatorcontrib>Blume, Astrid ; Benie, Andrew J ; Stolz, Florian ; Schmidt, Richard R ; Reutter, Werner ; Hinderlich, Stephan ; Peters, Thomas</creatorcontrib><description>The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.</description><identifier>ISSN: 0021-9258</identifier><identifier>DOI: 10.1074/jbc.M410238200</identifier><identifier>PMID: 15498764</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Binding Sites ; Carbohydrate Epimerases - chemistry ; Cell Line ; Epitopes - chemistry ; Insecta ; Ligands ; Magnetic Resonance Spectroscopy - methods ; Models, Chemical ; N-Acetylneuraminic Acid - biosynthesis ; Phosphotransferases - chemistry ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Recombinant Proteins - chemistry ; Uridine Diphosphate - chemistry ; Uridine Monophosphate - chemistry</subject><ispartof>The Journal of biological chemistry, 2004-12, Vol.279 (53), p.55715-55721</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15498764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blume, Astrid</creatorcontrib><creatorcontrib>Benie, Andrew J</creatorcontrib><creatorcontrib>Stolz, Florian</creatorcontrib><creatorcontrib>Schmidt, Richard R</creatorcontrib><creatorcontrib>Reutter, Werner</creatorcontrib><creatorcontrib>Hinderlich, Stephan</creatorcontrib><creatorcontrib>Peters, Thomas</creatorcontrib><title>Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Carbohydrate Epimerases - chemistry</subject><subject>Cell Line</subject><subject>Epitopes - chemistry</subject><subject>Insecta</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Chemical</subject><subject>N-Acetylneuraminic Acid - biosynthesis</subject><subject>Phosphotransferases - chemistry</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Uridine Diphosphate - chemistry</subject><subject>Uridine Monophosphate - chemistry</subject><issn>0021-9258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUDtPwzAQ9gCipbAyIk9sKXbiPMxWFSiVaEGIztHFubQuiRPiBCn9QfxOUmjFLae7-x6nj5ArzsacheJ2m6jxQnDmepHL2AkZMuZyR7p-NCDn1m5ZX0LyMzLgvpBRGIgh-Z5uoAbVYK130OjS0DKjuV6DSWmiTarNmjYlbTbYj1lr1B4DOf3AjqLZdQVSbX7PVkOuFQWl98zSdqbfWm1p0tHl4u2Ozsd0br7QNr360WlPXN2_OrNcLSeKug5WusAaLNJ_M910F-Q0g9zi5aGPyOrx4X365Dy_zObTybNTuUw2DkhXRUGUslT4yoMsFImfeShkkDIWqpABhImUHPtQhEpSmTKB0IeCnPsh-N6I3PzpVnX52fa_xoW2CvMcDJatjYOQRxGP3B54fQC2SYFpXNW6gLqLj8l6P7STe2c</recordid><startdate>20041231</startdate><enddate>20041231</enddate><creator>Blume, Astrid</creator><creator>Benie, Andrew J</creator><creator>Stolz, Florian</creator><creator>Schmidt, Richard R</creator><creator>Reutter, Werner</creator><creator>Hinderlich, Stephan</creator><creator>Peters, Thomas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20041231</creationdate><title>Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality</title><author>Blume, Astrid ; Benie, Andrew J ; Stolz, Florian ; Schmidt, Richard R ; Reutter, Werner ; Hinderlich, Stephan ; Peters, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p209t-a92c868d0d45c3af74b5f3e496d007c70aa7b991e9254cbd9d04ea049e1157a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Carbohydrate Epimerases - chemistry</topic><topic>Cell Line</topic><topic>Epitopes - chemistry</topic><topic>Insecta</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Chemical</topic><topic>N-Acetylneuraminic Acid - biosynthesis</topic><topic>Phosphotransferases - chemistry</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Uridine Diphosphate - chemistry</topic><topic>Uridine Monophosphate - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blume, Astrid</creatorcontrib><creatorcontrib>Benie, Andrew J</creatorcontrib><creatorcontrib>Stolz, Florian</creatorcontrib><creatorcontrib>Schmidt, Richard R</creatorcontrib><creatorcontrib>Reutter, Werner</creatorcontrib><creatorcontrib>Hinderlich, Stephan</creatorcontrib><creatorcontrib>Peters, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blume, Astrid</au><au>Benie, Andrew J</au><au>Stolz, Florian</au><au>Schmidt, Richard R</au><au>Reutter, Werner</au><au>Hinderlich, Stephan</au><au>Peters, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-12-31</date><risdate>2004</risdate><volume>279</volume><issue>53</issue><spage>55715</spage><epage>55721</epage><pages>55715-55721</pages><issn>0021-9258</issn><abstract>The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.</abstract><cop>United States</cop><pmid>15498764</pmid><doi>10.1074/jbc.M410238200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2004-12, Vol.279 (53), p.55715-55721
issn 0021-9258
language eng
recordid cdi_proquest_miscellaneous_67188182
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Binding Sites
Carbohydrate Epimerases - chemistry
Cell Line
Epitopes - chemistry
Insecta
Ligands
Magnetic Resonance Spectroscopy - methods
Models, Chemical
N-Acetylneuraminic Acid - biosynthesis
Phosphotransferases - chemistry
Protein Binding
Protein Structure, Tertiary
Rats
Recombinant Proteins - chemistry
Uridine Diphosphate - chemistry
Uridine Monophosphate - chemistry
title Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ligand%20binding%20to%20the%20bifunctional%20key%20enzyme%20in%20the%20sialic%20acid%20biosynthesis%20by%20NMR:%20I.%20Investigation%20of%20the%20UDP-GlcNAc%202-epimerase%20functionality&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Blume,%20Astrid&rft.date=2004-12-31&rft.volume=279&rft.issue=53&rft.spage=55715&rft.epage=55721&rft.pages=55715-55721&rft.issn=0021-9258&rft_id=info:doi/10.1074/jbc.M410238200&rft_dat=%3Cproquest_pubme%3E67188182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67188182&rft_id=info:pmid/15498764&rfr_iscdi=true