Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices
Endochondral ossification implicates chondrocyte signaling as an important factor in directing the osteogenic differentiation of mesenchymal stem cells in vivo . In this study, the osteoinductive capabilities of articular chondrocytes suspended in alginate hydrogels were analyzed via coculture with...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2009-05, Vol.15 (5), p.1181-1190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1190 |
---|---|
container_issue | 5 |
container_start_page | 1181 |
container_title | Tissue engineering. Part A |
container_volume | 15 |
creator | Thompson, Andrew D. Betz, Martha W. Yoon, Diana M. Fisher, John P. |
description | Endochondral ossification implicates chondrocyte signaling as an important factor in directing the osteogenic differentiation of mesenchymal stem cells
in vivo
. In this study, the osteoinductive capabilities of articular chondrocytes suspended in alginate hydrogels were analyzed via coculture with bone marrow stromal cells (BMSCs). In particular, the effect of chondrocyte coculture time on the mechanism underlying this osteogenic induction was examined. Chondrocytes were suspended in alginate beads and cultured above BMSCs in monolayer. Beads containing chondrocytes were removed after 1, 10, or 21 days of coculture. Quantitative reverse transcriptase polymerase chain reaction was used to assess the expression of alkaline phosphatase, bone morphogenetic protein-2, and osteocalcin by BMSCs after days 1, 8, 14, and 21. Calcium deposition was also assayed to characterize the extent of mineralization within cultures. Results indicate that osteogenic differentiation of BMSCs is initiated upon brief exposure to chondrocyte signaling, but requires continued exposure in order to progress fully and maintain an osteoblastic phenotype. |
doi_str_mv | 10.1089/ten.tea.2007.0275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67180665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20619664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a9734efe92a041f4128d231e1b83827afeab1a64704781160a50cc2fcfd865503</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1pab76A3op6iU3byXZ-vCxdZI2kJBDEshNyPKoq2BLW0km7E_ov66WXVropT2IEcMz7zA8VfWe4BXBsvuUwa8y6BXFWKwwFexVdUy6RtRNw55e__635Kg6SekZY465EG-rIyIlY4zi4-rnXcoQvoN3Bl04ayGCz05nFzwKFn0JHtCtjjG8oPscw6wn1MM0JXTtx8XAiIYt6oNZprxEQC8ur1G_Dn6MwWwzJHTpjd6kZdK5sM6jh3UEqC_cDD6VHSXuVufoDKSz6o3VU4J3h3paPV5dPvTf6pu7r9f955vatLjNte5E04KFjmrcEtsSKkfaECCDbCQV2oIeiOatwK2QhHCsGTaGWmNHyRnDzWl1vs_dxPBjgZTV7JIpN2kPYUmKCyIx5-yfIMWcdJy3Bfz4F_gcllhuS0p2heJEFobsGRNDShGs2kQ367hVBKudTFVklqfVTqbaySwzHw65yzDD-GfiYK8AYg_s2tr7ycEAMf9H9C_2_7CL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89206618</pqid></control><display><type>article</type><title>Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Thompson, Andrew D. ; Betz, Martha W. ; Yoon, Diana M. ; Fisher, John P.</creator><creatorcontrib>Thompson, Andrew D. ; Betz, Martha W. ; Yoon, Diana M. ; Fisher, John P.</creatorcontrib><description>Endochondral ossification implicates chondrocyte signaling as an important factor in directing the osteogenic differentiation of mesenchymal stem cells
in vivo
. In this study, the osteoinductive capabilities of articular chondrocytes suspended in alginate hydrogels were analyzed via coculture with bone marrow stromal cells (BMSCs). In particular, the effect of chondrocyte coculture time on the mechanism underlying this osteogenic induction was examined. Chondrocytes were suspended in alginate beads and cultured above BMSCs in monolayer. Beads containing chondrocytes were removed after 1, 10, or 21 days of coculture. Quantitative reverse transcriptase polymerase chain reaction was used to assess the expression of alkaline phosphatase, bone morphogenetic protein-2, and osteocalcin by BMSCs after days 1, 8, 14, and 21. Calcium deposition was also assayed to characterize the extent of mineralization within cultures. Results indicate that osteogenic differentiation of BMSCs is initiated upon brief exposure to chondrocyte signaling, but requires continued exposure in order to progress fully and maintain an osteoblastic phenotype.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2007.0275</identifier><identifier>PMID: 18855520</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Alginates ; Alkaline Phosphatase - genetics ; Animals ; Base Sequence ; Biocompatible Materials ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Bone Morphogenetic Protein 2 - genetics ; Calcium - metabolism ; Cell culture ; Cell Differentiation ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Coculture Techniques ; DNA Primers - genetics ; Glucuronic Acid ; Hexuronic Acids ; Hydrogels ; Osteocalcin - genetics ; Osteogenesis - genetics ; Osteogenesis - physiology ; Rats ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal transduction ; Stem cells ; Stromal Cells - cytology ; Stromal Cells - metabolism ; Time Factors ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part A, 2009-05, Vol.15 (5), p.1181-1190</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-a9734efe92a041f4128d231e1b83827afeab1a64704781160a50cc2fcfd865503</citedby><cites>FETCH-LOGICAL-c404t-a9734efe92a041f4128d231e1b83827afeab1a64704781160a50cc2fcfd865503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2007.0275$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2007.0275$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,776,780,3028,21703,27903,27904,55270,55282</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18855520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Andrew D.</creatorcontrib><creatorcontrib>Betz, Martha W.</creatorcontrib><creatorcontrib>Yoon, Diana M.</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><title>Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Endochondral ossification implicates chondrocyte signaling as an important factor in directing the osteogenic differentiation of mesenchymal stem cells
in vivo
. In this study, the osteoinductive capabilities of articular chondrocytes suspended in alginate hydrogels were analyzed via coculture with bone marrow stromal cells (BMSCs). In particular, the effect of chondrocyte coculture time on the mechanism underlying this osteogenic induction was examined. Chondrocytes were suspended in alginate beads and cultured above BMSCs in monolayer. Beads containing chondrocytes were removed after 1, 10, or 21 days of coculture. Quantitative reverse transcriptase polymerase chain reaction was used to assess the expression of alkaline phosphatase, bone morphogenetic protein-2, and osteocalcin by BMSCs after days 1, 8, 14, and 21. Calcium deposition was also assayed to characterize the extent of mineralization within cultures. Results indicate that osteogenic differentiation of BMSCs is initiated upon brief exposure to chondrocyte signaling, but requires continued exposure in order to progress fully and maintain an osteoblastic phenotype.</description><subject>Alginates</subject><subject>Alkaline Phosphatase - genetics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biocompatible Materials</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Morphogenetic Protein 2 - genetics</subject><subject>Calcium - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Coculture Techniques</subject><subject>DNA Primers - genetics</subject><subject>Glucuronic Acid</subject><subject>Hexuronic Acids</subject><subject>Hydrogels</subject><subject>Osteocalcin - genetics</subject><subject>Osteogenesis - genetics</subject><subject>Osteogenesis - physiology</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><subject>Time Factors</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1r3DAQhk1pab76A3op6iU3byXZ-vCxdZI2kJBDEshNyPKoq2BLW0km7E_ov66WXVropT2IEcMz7zA8VfWe4BXBsvuUwa8y6BXFWKwwFexVdUy6RtRNw55e__635Kg6SekZY465EG-rIyIlY4zi4-rnXcoQvoN3Bl04ayGCz05nFzwKFn0JHtCtjjG8oPscw6wn1MM0JXTtx8XAiIYt6oNZprxEQC8ur1G_Dn6MwWwzJHTpjd6kZdK5sM6jh3UEqC_cDD6VHSXuVufoDKSz6o3VU4J3h3paPV5dPvTf6pu7r9f955vatLjNte5E04KFjmrcEtsSKkfaECCDbCQV2oIeiOatwK2QhHCsGTaGWmNHyRnDzWl1vs_dxPBjgZTV7JIpN2kPYUmKCyIx5-yfIMWcdJy3Bfz4F_gcllhuS0p2heJEFobsGRNDShGs2kQ367hVBKudTFVklqfVTqbaySwzHw65yzDD-GfiYK8AYg_s2tr7ycEAMf9H9C_2_7CL</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Thompson, Andrew D.</creator><creator>Betz, Martha W.</creator><creator>Yoon, Diana M.</creator><creator>Fisher, John P.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices</title><author>Thompson, Andrew D. ; Betz, Martha W. ; Yoon, Diana M. ; Fisher, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a9734efe92a041f4128d231e1b83827afeab1a64704781160a50cc2fcfd865503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alginates</topic><topic>Alkaline Phosphatase - genetics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biocompatible Materials</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Morphogenetic Protein 2 - genetics</topic><topic>Calcium - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Coculture Techniques</topic><topic>DNA Primers - genetics</topic><topic>Glucuronic Acid</topic><topic>Hexuronic Acids</topic><topic>Hydrogels</topic><topic>Osteocalcin - genetics</topic><topic>Osteogenesis - genetics</topic><topic>Osteogenesis - physiology</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><topic>Time Factors</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Andrew D.</creatorcontrib><creatorcontrib>Betz, Martha W.</creatorcontrib><creatorcontrib>Yoon, Diana M.</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Andrew D.</au><au>Betz, Martha W.</au><au>Yoon, Diana M.</au><au>Fisher, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>15</volume><issue>5</issue><spage>1181</spage><epage>1190</epage><pages>1181-1190</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Endochondral ossification implicates chondrocyte signaling as an important factor in directing the osteogenic differentiation of mesenchymal stem cells
in vivo
. In this study, the osteoinductive capabilities of articular chondrocytes suspended in alginate hydrogels were analyzed via coculture with bone marrow stromal cells (BMSCs). In particular, the effect of chondrocyte coculture time on the mechanism underlying this osteogenic induction was examined. Chondrocytes were suspended in alginate beads and cultured above BMSCs in monolayer. Beads containing chondrocytes were removed after 1, 10, or 21 days of coculture. Quantitative reverse transcriptase polymerase chain reaction was used to assess the expression of alkaline phosphatase, bone morphogenetic protein-2, and osteocalcin by BMSCs after days 1, 8, 14, and 21. Calcium deposition was also assayed to characterize the extent of mineralization within cultures. Results indicate that osteogenic differentiation of BMSCs is initiated upon brief exposure to chondrocyte signaling, but requires continued exposure in order to progress fully and maintain an osteoblastic phenotype.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>18855520</pmid><doi>10.1089/ten.tea.2007.0275</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2009-05, Vol.15 (5), p.1181-1190 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_proquest_miscellaneous_67180665 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Alginates Alkaline Phosphatase - genetics Animals Base Sequence Biocompatible Materials Bone marrow Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Bone Morphogenetic Protein 2 - genetics Calcium - metabolism Cell culture Cell Differentiation Cells, Cultured Chondrocytes - cytology Chondrocytes - metabolism Coculture Techniques DNA Primers - genetics Glucuronic Acid Hexuronic Acids Hydrogels Osteocalcin - genetics Osteogenesis - genetics Osteogenesis - physiology Rats RNA, Messenger - genetics RNA, Messenger - metabolism Signal transduction Stem cells Stromal Cells - cytology Stromal Cells - metabolism Time Factors Tissue engineering Tissue Engineering - methods Tissue Scaffolds |
title | Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteogenic%20Differentiation%20of%20Bone%20Marrow%20Stromal%20Cells%20Induced%20by%20Coculture%20with%20Chondrocytes%20Encapsulated%20in%20Three-Dimensional%20Matrices&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Thompson,%20Andrew%20D.&rft.date=2009-05-01&rft.volume=15&rft.issue=5&rft.spage=1181&rft.epage=1190&rft.pages=1181-1190&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2007.0275&rft_dat=%3Cproquest_cross%3E20619664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89206618&rft_id=info:pmid/18855520&rfr_iscdi=true |