Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation
The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2004-12, Vol.44 (6), p.1021-1030 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1030 |
---|---|
container_issue | 6 |
container_start_page | 1021 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 44 |
creator | Oray, Serkan Majewska, Ania Sur, Mriganka |
description | The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity. |
doi_str_mv | 10.1016/j.neuron.2004.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67178968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627304007901</els_id><sourcerecordid>17714821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModq3-A5GA4N2MOZOvyY1QurUKLYIf1yGTnC1ZdjNrMlO6_95sd6HghV6FcJ5zcvI-hLwF1gID9XHdJpzzmNqOMdFC1zIGz8gCmNGNAGOekwXrjWpUp_kZeVXKugJCGnhJzkAqxrUQCxKWmEKOU_T0xy4mpMt9ctvoC73ISL_j3bxxEwY67OntmEZfr5kucZfjvZvimKhLgV49TNl53Gweq7duyvGhQnfZhUfoNXmxcpuCb07nOfn1-ern5Zfm5tv118uLm8ZLDlPDVecYMysx8C6EFfdSmSEI0zsYFBghvRG9rvWux2HwToJG33PgHJw0TPJz8uE4d5fH3zOWyW5jOezlEo5zsUqDrpH0_wVBaxB9BxV8_xe4Huec6icsSMaVMLpnlRJHyuexlIwrW_PZury3wOxBll3boyx7kGWhs9VFbXt3Gj4PWwxPTSc7Ffh0BLCGdh8x2-IjJo8hZvSTDWP89wt_AFXVpvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503649780</pqid></control><display><type>article</type><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</creator><creatorcontrib>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</creatorcontrib><description>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2004.12.001</identifier><identifier>PMID: 15603744</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Dendritic Spines - physiology ; Enzymes ; Extracellular Matrix - metabolism ; Extracellular Matrix - pathology ; Extracellular Matrix - physiology ; In Vitro Techniques ; Mice ; Mice, Inbred C57BL ; Microscopy ; Motility ; Sensory Deprivation - physiology ; Vision, Monocular - physiology ; Visual Cortex - pathology ; Visual Cortex - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2004-12, Vol.44 (6), p.1021-1030</ispartof><rights>2004 Cell Press</rights><rights>Copyright Elsevier Limited Dec 16, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</citedby><cites>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2004.12.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15603744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oray, Serkan</creatorcontrib><creatorcontrib>Majewska, Ania</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</description><subject>Animals</subject><subject>Dendritic Spines - physiology</subject><subject>Enzymes</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix - pathology</subject><subject>Extracellular Matrix - physiology</subject><subject>In Vitro Techniques</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Motility</subject><subject>Sensory Deprivation - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual Cortex - pathology</subject><subject>Visual Cortex - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModq3-A5GA4N2MOZOvyY1QurUKLYIf1yGTnC1ZdjNrMlO6_95sd6HghV6FcJ5zcvI-hLwF1gID9XHdJpzzmNqOMdFC1zIGz8gCmNGNAGOekwXrjWpUp_kZeVXKugJCGnhJzkAqxrUQCxKWmEKOU_T0xy4mpMt9ctvoC73ISL_j3bxxEwY67OntmEZfr5kucZfjvZvimKhLgV49TNl53Gweq7duyvGhQnfZhUfoNXmxcpuCb07nOfn1-ern5Zfm5tv118uLm8ZLDlPDVecYMysx8C6EFfdSmSEI0zsYFBghvRG9rvWux2HwToJG33PgHJw0TPJz8uE4d5fH3zOWyW5jOezlEo5zsUqDrpH0_wVBaxB9BxV8_xe4Huec6icsSMaVMLpnlRJHyuexlIwrW_PZury3wOxBll3boyx7kGWhs9VFbXt3Gj4PWwxPTSc7Ffh0BLCGdh8x2-IjJo8hZvSTDWP89wt_AFXVpvM</recordid><startdate>20041216</startdate><enddate>20041216</enddate><creator>Oray, Serkan</creator><creator>Majewska, Ania</creator><creator>Sur, Mriganka</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041216</creationdate><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><author>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Dendritic Spines - physiology</topic><topic>Enzymes</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix - pathology</topic><topic>Extracellular Matrix - physiology</topic><topic>In Vitro Techniques</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Motility</topic><topic>Sensory Deprivation - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual Cortex - pathology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oray, Serkan</creatorcontrib><creatorcontrib>Majewska, Ania</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oray, Serkan</au><au>Majewska, Ania</au><au>Sur, Mriganka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2004-12-16</date><risdate>2004</risdate><volume>44</volume><issue>6</issue><spage>1021</spage><epage>1030</epage><pages>1021-1030</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15603744</pmid><doi>10.1016/j.neuron.2004.12.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2004-12, Vol.44 (6), p.1021-1030 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_67178968 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Dendritic Spines - physiology Enzymes Extracellular Matrix - metabolism Extracellular Matrix - pathology Extracellular Matrix - physiology In Vitro Techniques Mice Mice, Inbred C57BL Microscopy Motility Sensory Deprivation - physiology Vision, Monocular - physiology Visual Cortex - pathology Visual Cortex - physiology |
title | Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendritic%20Spine%20Dynamics%20Are%20Regulated%20by%20Monocular%20Deprivation%20and%20Extracellular%20Matrix%20Degradation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Oray,%20Serkan&rft.date=2004-12-16&rft.volume=44&rft.issue=6&rft.spage=1021&rft.epage=1030&rft.pages=1021-1030&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2004.12.001&rft_dat=%3Cproquest_cross%3E17714821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503649780&rft_id=info:pmid/15603744&rft_els_id=S0896627304007901&rfr_iscdi=true |