Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation

The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2004-12, Vol.44 (6), p.1021-1030
Hauptverfasser: Oray, Serkan, Majewska, Ania, Sur, Mriganka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue 6
container_start_page 1021
container_title Neuron (Cambridge, Mass.)
container_volume 44
creator Oray, Serkan
Majewska, Ania
Sur, Mriganka
description The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.
doi_str_mv 10.1016/j.neuron.2004.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67178968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627304007901</els_id><sourcerecordid>17714821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModq3-A5GA4N2MOZOvyY1QurUKLYIf1yGTnC1ZdjNrMlO6_95sd6HghV6FcJ5zcvI-hLwF1gID9XHdJpzzmNqOMdFC1zIGz8gCmNGNAGOekwXrjWpUp_kZeVXKugJCGnhJzkAqxrUQCxKWmEKOU_T0xy4mpMt9ctvoC73ISL_j3bxxEwY67OntmEZfr5kucZfjvZvimKhLgV49TNl53Gweq7duyvGhQnfZhUfoNXmxcpuCb07nOfn1-ern5Zfm5tv118uLm8ZLDlPDVecYMysx8C6EFfdSmSEI0zsYFBghvRG9rvWux2HwToJG33PgHJw0TPJz8uE4d5fH3zOWyW5jOezlEo5zsUqDrpH0_wVBaxB9BxV8_xe4Huec6icsSMaVMLpnlRJHyuexlIwrW_PZury3wOxBll3boyx7kGWhs9VFbXt3Gj4PWwxPTSc7Ffh0BLCGdh8x2-IjJo8hZvSTDWP89wt_AFXVpvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503649780</pqid></control><display><type>article</type><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</creator><creatorcontrib>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</creatorcontrib><description>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2004.12.001</identifier><identifier>PMID: 15603744</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Dendritic Spines - physiology ; Enzymes ; Extracellular Matrix - metabolism ; Extracellular Matrix - pathology ; Extracellular Matrix - physiology ; In Vitro Techniques ; Mice ; Mice, Inbred C57BL ; Microscopy ; Motility ; Sensory Deprivation - physiology ; Vision, Monocular - physiology ; Visual Cortex - pathology ; Visual Cortex - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2004-12, Vol.44 (6), p.1021-1030</ispartof><rights>2004 Cell Press</rights><rights>Copyright Elsevier Limited Dec 16, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</citedby><cites>FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2004.12.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15603744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oray, Serkan</creatorcontrib><creatorcontrib>Majewska, Ania</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</description><subject>Animals</subject><subject>Dendritic Spines - physiology</subject><subject>Enzymes</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix - pathology</subject><subject>Extracellular Matrix - physiology</subject><subject>In Vitro Techniques</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Motility</subject><subject>Sensory Deprivation - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual Cortex - pathology</subject><subject>Visual Cortex - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModq3-A5GA4N2MOZOvyY1QurUKLYIf1yGTnC1ZdjNrMlO6_95sd6HghV6FcJ5zcvI-hLwF1gID9XHdJpzzmNqOMdFC1zIGz8gCmNGNAGOekwXrjWpUp_kZeVXKugJCGnhJzkAqxrUQCxKWmEKOU_T0xy4mpMt9ctvoC73ISL_j3bxxEwY67OntmEZfr5kucZfjvZvimKhLgV49TNl53Gweq7duyvGhQnfZhUfoNXmxcpuCb07nOfn1-ern5Zfm5tv118uLm8ZLDlPDVecYMysx8C6EFfdSmSEI0zsYFBghvRG9rvWux2HwToJG33PgHJw0TPJz8uE4d5fH3zOWyW5jOezlEo5zsUqDrpH0_wVBaxB9BxV8_xe4Huec6icsSMaVMLpnlRJHyuexlIwrW_PZury3wOxBll3boyx7kGWhs9VFbXt3Gj4PWwxPTSc7Ffh0BLCGdh8x2-IjJo8hZvSTDWP89wt_AFXVpvM</recordid><startdate>20041216</startdate><enddate>20041216</enddate><creator>Oray, Serkan</creator><creator>Majewska, Ania</creator><creator>Sur, Mriganka</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041216</creationdate><title>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</title><author>Oray, Serkan ; Majewska, Ania ; Sur, Mriganka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-362a009f4b32ddf3c569bd498a1b61945c94879f428ebbca517ec831331a59053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Dendritic Spines - physiology</topic><topic>Enzymes</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix - pathology</topic><topic>Extracellular Matrix - physiology</topic><topic>In Vitro Techniques</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Motility</topic><topic>Sensory Deprivation - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual Cortex - pathology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oray, Serkan</creatorcontrib><creatorcontrib>Majewska, Ania</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oray, Serkan</au><au>Majewska, Ania</au><au>Sur, Mriganka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2004-12-16</date><risdate>2004</risdate><volume>44</volume><issue>6</issue><spage>1021</spage><epage>1030</epage><pages>1021-1030</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15603744</pmid><doi>10.1016/j.neuron.2004.12.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2004-12, Vol.44 (6), p.1021-1030
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_67178968
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Dendritic Spines - physiology
Enzymes
Extracellular Matrix - metabolism
Extracellular Matrix - pathology
Extracellular Matrix - physiology
In Vitro Techniques
Mice
Mice, Inbred C57BL
Microscopy
Motility
Sensory Deprivation - physiology
Vision, Monocular - physiology
Visual Cortex - pathology
Visual Cortex - physiology
title Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendritic%20Spine%20Dynamics%20Are%20Regulated%20by%20Monocular%20Deprivation%20and%20Extracellular%20Matrix%20Degradation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Oray,%20Serkan&rft.date=2004-12-16&rft.volume=44&rft.issue=6&rft.spage=1021&rft.epage=1030&rft.pages=1021-1030&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2004.12.001&rft_dat=%3Cproquest_cross%3E17714821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503649780&rft_id=info:pmid/15603744&rft_els_id=S0896627304007901&rfr_iscdi=true