Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max
Although mitochondrial DNA damage accumulates in aging skeletal muscles, how this relates to the decline in muscle mass-specific skeletal muscle aerobic function is unknown. We used a pump-perfused rat hind-limb model to examine maximal aerobic performance (V̇O2max) in young adult (YA; 8–9-month-old...
Gespeichert in:
Veröffentlicht in: | The journals of gerontology. Series A, Biological sciences and medical sciences Biological sciences and medical sciences, 2004-11, Vol.59 (11), p.1099-1110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 11 |
container_start_page | 1099 |
container_title | The journals of gerontology. Series A, Biological sciences and medical sciences |
container_volume | 59 |
creator | Hagen, Jason L. Krause, Daniel J. Baker, David J. Fu, Ming Hua Tarnopolsky, Mark A. Hepple, Russell T. |
description | Although mitochondrial DNA damage accumulates in aging skeletal muscles, how this relates to the decline in muscle mass-specific skeletal muscle aerobic function is unknown. We used a pump-perfused rat hind-limb model to examine maximal aerobic performance (V̇O2max) in young adult (YA; 8–9-month-old), late middle aged (LMA; 28–30-month-old) and senescent (SEN; 36-month-old) Fischer 344 × Brown Norway F1-hybrid rats at matched rates of convective O2 delivery (QO2). Despite similar muscle QO2 during a 4-minute contraction bout, muscle mass-specific V̇O2max was reduced in LMA (15%) and SEN (52%) versus YA. In plantaris muscle homogenates, nested polymerase chain reaction revealed an increased frequency of mitochondrial DNA deletions in the older animals. A greater reduction in the flux through electron transport chain complexes I–III than citrate synthase activity in the older animals suggests mitochondrial dysfunction consequent to mitochondrial DNA damage with aging. These results support the hypothesis that a reduced oxidative capacity, due in part to age-related mitochondrial dysfunction, contributes to the decline in aerobic performance in aging skeletal muscles. |
doi_str_mv | 10.1093/gerona/59.11.1099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67173458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67173458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3619-93fd9e81c24d477294e2a59195b1dc2995e646dcc6a9ca59209d3eca0f6969ba3</originalsourceid><addsrcrecordid>eNpFkE1v1DAQhi0EoqXwA7ggn7hl64_YWXPbD5attG0lvlRxsRx7sjXNxq3tSN0rv5xEWcFcZjTzvO9IL0LvKZlRovjlHmLozKVQM0rHjXqBzmkl5oXg4u7lMJNKFYIQeYbepPSbjCXYa3RGhSSMCHGO_nx7gBayafF1n2wLeLH33R77Dm94WS5v8IYW22MdvcNfTU6f8NUMX_sc7H3oXPSDbn1MTd_Z7EOHV6HL0dd9hoRzwPl-9INikVKw3mQYTMD1Ezu8-HnLDub5LXrVmDbBu1O_QD82n7-vtsXu9svVarErLJdUFYo3TsGcWla6sqqYKoEZoagSNXWWKSVAltJZK42yw4ER5ThYQxqppKoNv0AfJ9_HGJ56SFkffLLQtqaD0CctK1rxUswHkE6gjSGlCI1-jP5g4lFTosfg9RS8FkpTOm7UoPlwMu_rA7j_ilPSA1BMgE8Znv_dTXwYHvNK6O3dL71c38x3bL3UO_4XcmqOvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67173458</pqid></control><display><type>article</type><title>Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hagen, Jason L. ; Krause, Daniel J. ; Baker, David J. ; Fu, Ming Hua ; Tarnopolsky, Mark A. ; Hepple, Russell T.</creator><creatorcontrib>Hagen, Jason L. ; Krause, Daniel J. ; Baker, David J. ; Fu, Ming Hua ; Tarnopolsky, Mark A. ; Hepple, Russell T.</creatorcontrib><description>Although mitochondrial DNA damage accumulates in aging skeletal muscles, how this relates to the decline in muscle mass-specific skeletal muscle aerobic function is unknown. We used a pump-perfused rat hind-limb model to examine maximal aerobic performance (V̇O2max) in young adult (YA; 8–9-month-old), late middle aged (LMA; 28–30-month-old) and senescent (SEN; 36-month-old) Fischer 344 × Brown Norway F1-hybrid rats at matched rates of convective O2 delivery (QO2). Despite similar muscle QO2 during a 4-minute contraction bout, muscle mass-specific V̇O2max was reduced in LMA (15%) and SEN (52%) versus YA. In plantaris muscle homogenates, nested polymerase chain reaction revealed an increased frequency of mitochondrial DNA deletions in the older animals. A greater reduction in the flux through electron transport chain complexes I–III than citrate synthase activity in the older animals suggests mitochondrial dysfunction consequent to mitochondrial DNA damage with aging. These results support the hypothesis that a reduced oxidative capacity, due in part to age-related mitochondrial dysfunction, contributes to the decline in aerobic performance in aging skeletal muscles.</description><identifier>ISSN: 1079-5006</identifier><identifier>EISSN: 1758-535X</identifier><identifier>DOI: 10.1093/gerona/59.11.1099</identifier><identifier>PMID: 15602055</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Aerobiosis ; Aging - metabolism ; Animals ; DNA Damage ; DNA, Mitochondrial - genetics ; Electron Transport ; Hindlimb ; Male ; Mitochondria, Muscle - metabolism ; Muscle Contraction ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Oxygen Consumption ; Rats ; Rats, Inbred BN ; Rats, Inbred F344 ; Sequence Deletion</subject><ispartof>The journals of gerontology. Series A, Biological sciences and medical sciences, 2004-11, Vol.59 (11), p.1099-1110</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3619-93fd9e81c24d477294e2a59195b1dc2995e646dcc6a9ca59209d3eca0f6969ba3</citedby><cites>FETCH-LOGICAL-c3619-93fd9e81c24d477294e2a59195b1dc2995e646dcc6a9ca59209d3eca0f6969ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15602055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagen, Jason L.</creatorcontrib><creatorcontrib>Krause, Daniel J.</creatorcontrib><creatorcontrib>Baker, David J.</creatorcontrib><creatorcontrib>Fu, Ming Hua</creatorcontrib><creatorcontrib>Tarnopolsky, Mark A.</creatorcontrib><creatorcontrib>Hepple, Russell T.</creatorcontrib><title>Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max</title><title>The journals of gerontology. Series A, Biological sciences and medical sciences</title><addtitle>J Gerontol A Biol Sci Med Sci</addtitle><description>Although mitochondrial DNA damage accumulates in aging skeletal muscles, how this relates to the decline in muscle mass-specific skeletal muscle aerobic function is unknown. We used a pump-perfused rat hind-limb model to examine maximal aerobic performance (V̇O2max) in young adult (YA; 8–9-month-old), late middle aged (LMA; 28–30-month-old) and senescent (SEN; 36-month-old) Fischer 344 × Brown Norway F1-hybrid rats at matched rates of convective O2 delivery (QO2). Despite similar muscle QO2 during a 4-minute contraction bout, muscle mass-specific V̇O2max was reduced in LMA (15%) and SEN (52%) versus YA. In plantaris muscle homogenates, nested polymerase chain reaction revealed an increased frequency of mitochondrial DNA deletions in the older animals. A greater reduction in the flux through electron transport chain complexes I–III than citrate synthase activity in the older animals suggests mitochondrial dysfunction consequent to mitochondrial DNA damage with aging. These results support the hypothesis that a reduced oxidative capacity, due in part to age-related mitochondrial dysfunction, contributes to the decline in aerobic performance in aging skeletal muscles.</description><subject>Aerobiosis</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>DNA Damage</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Electron Transport</subject><subject>Hindlimb</subject><subject>Male</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Oxygen Consumption</subject><subject>Rats</subject><subject>Rats, Inbred BN</subject><subject>Rats, Inbred F344</subject><subject>Sequence Deletion</subject><issn>1079-5006</issn><issn>1758-535X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1v1DAQhi0EoqXwA7ggn7hl64_YWXPbD5attG0lvlRxsRx7sjXNxq3tSN0rv5xEWcFcZjTzvO9IL0LvKZlRovjlHmLozKVQM0rHjXqBzmkl5oXg4u7lMJNKFYIQeYbepPSbjCXYa3RGhSSMCHGO_nx7gBayafF1n2wLeLH33R77Dm94WS5v8IYW22MdvcNfTU6f8NUMX_sc7H3oXPSDbn1MTd_Z7EOHV6HL0dd9hoRzwPl-9INikVKw3mQYTMD1Ezu8-HnLDub5LXrVmDbBu1O_QD82n7-vtsXu9svVarErLJdUFYo3TsGcWla6sqqYKoEZoagSNXWWKSVAltJZK42yw4ER5ThYQxqppKoNv0AfJ9_HGJ56SFkffLLQtqaD0CctK1rxUswHkE6gjSGlCI1-jP5g4lFTosfg9RS8FkpTOm7UoPlwMu_rA7j_ilPSA1BMgE8Znv_dTXwYHvNK6O3dL71c38x3bL3UO_4XcmqOvg</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Hagen, Jason L.</creator><creator>Krause, Daniel J.</creator><creator>Baker, David J.</creator><creator>Fu, Ming Hua</creator><creator>Tarnopolsky, Mark A.</creator><creator>Hepple, Russell T.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max</title><author>Hagen, Jason L. ; Krause, Daniel J. ; Baker, David J. ; Fu, Ming Hua ; Tarnopolsky, Mark A. ; Hepple, Russell T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3619-93fd9e81c24d477294e2a59195b1dc2995e646dcc6a9ca59209d3eca0f6969ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerobiosis</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>DNA Damage</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Electron Transport</topic><topic>Hindlimb</topic><topic>Male</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Oxygen Consumption</topic><topic>Rats</topic><topic>Rats, Inbred BN</topic><topic>Rats, Inbred F344</topic><topic>Sequence Deletion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagen, Jason L.</creatorcontrib><creatorcontrib>Krause, Daniel J.</creatorcontrib><creatorcontrib>Baker, David J.</creatorcontrib><creatorcontrib>Fu, Ming Hua</creatorcontrib><creatorcontrib>Tarnopolsky, Mark A.</creatorcontrib><creatorcontrib>Hepple, Russell T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journals of gerontology. Series A, Biological sciences and medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagen, Jason L.</au><au>Krause, Daniel J.</au><au>Baker, David J.</au><au>Fu, Ming Hua</au><au>Tarnopolsky, Mark A.</au><au>Hepple, Russell T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max</atitle><jtitle>The journals of gerontology. Series A, Biological sciences and medical sciences</jtitle><addtitle>J Gerontol A Biol Sci Med Sci</addtitle><date>2004-11</date><risdate>2004</risdate><volume>59</volume><issue>11</issue><spage>1099</spage><epage>1110</epage><pages>1099-1110</pages><issn>1079-5006</issn><eissn>1758-535X</eissn><abstract>Although mitochondrial DNA damage accumulates in aging skeletal muscles, how this relates to the decline in muscle mass-specific skeletal muscle aerobic function is unknown. We used a pump-perfused rat hind-limb model to examine maximal aerobic performance (V̇O2max) in young adult (YA; 8–9-month-old), late middle aged (LMA; 28–30-month-old) and senescent (SEN; 36-month-old) Fischer 344 × Brown Norway F1-hybrid rats at matched rates of convective O2 delivery (QO2). Despite similar muscle QO2 during a 4-minute contraction bout, muscle mass-specific V̇O2max was reduced in LMA (15%) and SEN (52%) versus YA. In plantaris muscle homogenates, nested polymerase chain reaction revealed an increased frequency of mitochondrial DNA deletions in the older animals. A greater reduction in the flux through electron transport chain complexes I–III than citrate synthase activity in the older animals suggests mitochondrial dysfunction consequent to mitochondrial DNA damage with aging. These results support the hypothesis that a reduced oxidative capacity, due in part to age-related mitochondrial dysfunction, contributes to the decline in aerobic performance in aging skeletal muscles.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>15602055</pmid><doi>10.1093/gerona/59.11.1099</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5006 |
ispartof | The journals of gerontology. Series A, Biological sciences and medical sciences, 2004-11, Vol.59 (11), p.1099-1110 |
issn | 1079-5006 1758-535X |
language | eng |
recordid | cdi_proquest_miscellaneous_67173458 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Aerobiosis Aging - metabolism Animals DNA Damage DNA, Mitochondrial - genetics Electron Transport Hindlimb Male Mitochondria, Muscle - metabolism Muscle Contraction Muscle, Skeletal - blood supply Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Oxygen Consumption Rats Rats, Inbred BN Rats, Inbred F344 Sequence Deletion |
title | Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20Muscle%20Aging%20in%20F344BN%20F1-Hybrid%20Rats:%20I.%20Mitochondrial%20Dysfunction%20Contributes%20to%20the%20Age-Associated%20Reduction%20in%20VO2max&rft.jtitle=The%20journals%20of%20gerontology.%20Series%20A,%20Biological%20sciences%20and%20medical%20sciences&rft.au=Hagen,%20Jason%20L.&rft.date=2004-11&rft.volume=59&rft.issue=11&rft.spage=1099&rft.epage=1110&rft.pages=1099-1110&rft.issn=1079-5006&rft.eissn=1758-535X&rft_id=info:doi/10.1093/gerona/59.11.1099&rft_dat=%3Cproquest_cross%3E67173458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67173458&rft_id=info:pmid/15602055&rfr_iscdi=true |