Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives

A wave of recent behavioral studies has generated a new wealth of parametric observations about serial order behavior. What was a trickle of neurophysiological studies has grown to a steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human movement science 2004-11, Vol.23 (5), p.699-746
Hauptverfasser: Rhodes, Bradley J., Bullock, Daniel, Verwey, Willem B., Averbeck, Bruno B., Page, Michael P.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 746
container_issue 5
container_start_page 699
container_title Human movement science
container_volume 23
creator Rhodes, Bradley J.
Bullock, Daniel
Verwey, Willem B.
Averbeck, Bruno B.
Page, Michael P.A.
description A wave of recent behavioral studies has generated a new wealth of parametric observations about serial order behavior. What was a trickle of neurophysiological studies has grown to a steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we review major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2 × N, discrete sequence production, and serial reaction time. These tasks populate a continuum from higher to lower degrees of internal control of sequential organization and probe important contemporary issues such as the nature of working-memory representations for sequential behavior, and the development and role of chunks in hierarchical control. The main movement classes reviewed are speech and keypressing, both involving small amplitude movements amenable to parametric study. A synopsis of serial order models, vis-à-vis major empirical findings leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been complemented by successful prediction of distinctively patterned electrophysiological recordings. In lateral prefrontal cortex, parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model – the N-STREAMS neural network model – exemplifies ongoing attempts to accommodate a broad range of both behavioral and neurobiological data within a CQ-consistent theory.
doi_str_mv 10.1016/j.humov.2004.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67166881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167945704000867</els_id><sourcerecordid>67166881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-1dc2d78eab86e43e7baccb42eae6f4179f70eb8ef010718b65b190bad6d970073</originalsourceid><addsrcrecordid>eNqFkUFr2zAYhsXoWNJsv2AwfOlOdSopsiQPeuhK2w0CvWxnIUufEwVb8qQ40H8_uQnk1p4EH8_38Ol9EfpK8JJgwm92y-3Yh8OSYszyZImx_IDmRApaCs74BZpnSpQ1q8QMXaa0wxhzxtgnNCNVJWtO6znarkFH7_ym0N4WQwx2NHsXfBHaIsuhB78vEvwbwRtIP4qfsNUHF6LurgsPYwzD9iW50IWNM9NssvTBQjcpB4hpgOw7QPqMPra6S_Dl9C7Q38eHP_e_yvXz0-_7u3VpmGT7klhDrZCgG8mBrUA02piGUdDAW0ZE3QoMjYQWEyyIbHjVkBo32nJbC4zFaoG-H735L_nqtFe9Swa6TnsIY1JcEM6lJO-CRFSUVIxmcHUETQwpRWjVEF2v44siWE1NqJ16bUJNTUzD3ETe-nbSj00P9rxzij4DVydApxxdG7U3Lp05vhKU0Ul0e-Qgp3ZwEFUybmrDupizVTa4Nw_5D-gdqps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17521542</pqid></control><display><type>article</type><title>Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rhodes, Bradley J. ; Bullock, Daniel ; Verwey, Willem B. ; Averbeck, Bruno B. ; Page, Michael P.A.</creator><creatorcontrib>Rhodes, Bradley J. ; Bullock, Daniel ; Verwey, Willem B. ; Averbeck, Bruno B. ; Page, Michael P.A.</creatorcontrib><description>A wave of recent behavioral studies has generated a new wealth of parametric observations about serial order behavior. What was a trickle of neurophysiological studies has grown to a steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we review major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2 × N, discrete sequence production, and serial reaction time. These tasks populate a continuum from higher to lower degrees of internal control of sequential organization and probe important contemporary issues such as the nature of working-memory representations for sequential behavior, and the development and role of chunks in hierarchical control. The main movement classes reviewed are speech and keypressing, both involving small amplitude movements amenable to parametric study. A synopsis of serial order models, vis-à-vis major empirical findings leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been complemented by successful prediction of distinctively patterned electrophysiological recordings. In lateral prefrontal cortex, parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model – the N-STREAMS neural network model – exemplifies ongoing attempts to accommodate a broad range of both behavioral and neurobiological data within a CQ-consistent theory.</description><identifier>ISSN: 0167-9457</identifier><identifier>EISSN: 1872-7646</identifier><identifier>DOI: 10.1016/j.humov.2004.10.008</identifier><identifier>PMID: 15589629</identifier><identifier>CODEN: HMSCDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Attention - physiology ; Basal ganglia ; Basal Ganglia - physiology ; Biological and medical sciences ; Brain - physiology ; Cerebellum ; Cerebellum - physiology ; Cerebral Cortex - physiology ; Cognitive processes ; Competitive queuing ; Computer Simulation ; Computer simulations ; Fundamental and applied biological sciences. Psychology ; Humans ; Models, Neurological ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Motor performance ; Neural networks ; Neural Networks (Computer) ; Prefrontal cortex ; Prefrontal Cortex - physiology ; Primacy ; Primates ; Psychomotor Performance - physiology ; Reaction Time - physiology ; Serial learning ; Serial Learning - physiology ; Vertebrates: nervous system and sense organs ; Working memory</subject><ispartof>Human movement science, 2004-11, Vol.23 (5), p.699-746</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-1dc2d78eab86e43e7baccb42eae6f4179f70eb8ef010718b65b190bad6d970073</citedby><cites>FETCH-LOGICAL-c484t-1dc2d78eab86e43e7baccb42eae6f4179f70eb8ef010718b65b190bad6d970073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167945704000867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16372428$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15589629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhodes, Bradley J.</creatorcontrib><creatorcontrib>Bullock, Daniel</creatorcontrib><creatorcontrib>Verwey, Willem B.</creatorcontrib><creatorcontrib>Averbeck, Bruno B.</creatorcontrib><creatorcontrib>Page, Michael P.A.</creatorcontrib><title>Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives</title><title>Human movement science</title><addtitle>Hum Mov Sci</addtitle><description>A wave of recent behavioral studies has generated a new wealth of parametric observations about serial order behavior. What was a trickle of neurophysiological studies has grown to a steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we review major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2 × N, discrete sequence production, and serial reaction time. These tasks populate a continuum from higher to lower degrees of internal control of sequential organization and probe important contemporary issues such as the nature of working-memory representations for sequential behavior, and the development and role of chunks in hierarchical control. The main movement classes reviewed are speech and keypressing, both involving small amplitude movements amenable to parametric study. A synopsis of serial order models, vis-à-vis major empirical findings leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been complemented by successful prediction of distinctively patterned electrophysiological recordings. In lateral prefrontal cortex, parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model – the N-STREAMS neural network model – exemplifies ongoing attempts to accommodate a broad range of both behavioral and neurobiological data within a CQ-consistent theory.</description><subject>Animals</subject><subject>Attention - physiology</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain - physiology</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cognitive processes</subject><subject>Competitive queuing</subject><subject>Computer Simulation</subject><subject>Computer simulations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Motor performance</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - physiology</subject><subject>Primacy</subject><subject>Primates</subject><subject>Psychomotor Performance - physiology</subject><subject>Reaction Time - physiology</subject><subject>Serial learning</subject><subject>Serial Learning - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Working memory</subject><issn>0167-9457</issn><issn>1872-7646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr2zAYhsXoWNJsv2AwfOlOdSopsiQPeuhK2w0CvWxnIUufEwVb8qQ40H8_uQnk1p4EH8_38Ol9EfpK8JJgwm92y-3Yh8OSYszyZImx_IDmRApaCs74BZpnSpQ1q8QMXaa0wxhzxtgnNCNVJWtO6znarkFH7_ym0N4WQwx2NHsXfBHaIsuhB78vEvwbwRtIP4qfsNUHF6LurgsPYwzD9iW50IWNM9NssvTBQjcpB4hpgOw7QPqMPra6S_Dl9C7Q38eHP_e_yvXz0-_7u3VpmGT7klhDrZCgG8mBrUA02piGUdDAW0ZE3QoMjYQWEyyIbHjVkBo32nJbC4zFaoG-H735L_nqtFe9Swa6TnsIY1JcEM6lJO-CRFSUVIxmcHUETQwpRWjVEF2v44siWE1NqJ16bUJNTUzD3ETe-nbSj00P9rxzij4DVydApxxdG7U3Lp05vhKU0Ul0e-Qgp3ZwEFUybmrDupizVTa4Nw_5D-gdqps</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Rhodes, Bradley J.</creator><creator>Bullock, Daniel</creator><creator>Verwey, Willem B.</creator><creator>Averbeck, Bruno B.</creator><creator>Page, Michael P.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives</title><author>Rhodes, Bradley J. ; Bullock, Daniel ; Verwey, Willem B. ; Averbeck, Bruno B. ; Page, Michael P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-1dc2d78eab86e43e7baccb42eae6f4179f70eb8ef010718b65b190bad6d970073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Attention - physiology</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain - physiology</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cognitive processes</topic><topic>Competitive queuing</topic><topic>Computer Simulation</topic><topic>Computer simulations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Motor performance</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - physiology</topic><topic>Primacy</topic><topic>Primates</topic><topic>Psychomotor Performance - physiology</topic><topic>Reaction Time - physiology</topic><topic>Serial learning</topic><topic>Serial Learning - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhodes, Bradley J.</creatorcontrib><creatorcontrib>Bullock, Daniel</creatorcontrib><creatorcontrib>Verwey, Willem B.</creatorcontrib><creatorcontrib>Averbeck, Bruno B.</creatorcontrib><creatorcontrib>Page, Michael P.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Human movement science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhodes, Bradley J.</au><au>Bullock, Daniel</au><au>Verwey, Willem B.</au><au>Averbeck, Bruno B.</au><au>Page, Michael P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives</atitle><jtitle>Human movement science</jtitle><addtitle>Hum Mov Sci</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>23</volume><issue>5</issue><spage>699</spage><epage>746</epage><pages>699-746</pages><issn>0167-9457</issn><eissn>1872-7646</eissn><coden>HMSCDO</coden><abstract>A wave of recent behavioral studies has generated a new wealth of parametric observations about serial order behavior. What was a trickle of neurophysiological studies has grown to a steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we review major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2 × N, discrete sequence production, and serial reaction time. These tasks populate a continuum from higher to lower degrees of internal control of sequential organization and probe important contemporary issues such as the nature of working-memory representations for sequential behavior, and the development and role of chunks in hierarchical control. The main movement classes reviewed are speech and keypressing, both involving small amplitude movements amenable to parametric study. A synopsis of serial order models, vis-à-vis major empirical findings leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been complemented by successful prediction of distinctively patterned electrophysiological recordings. In lateral prefrontal cortex, parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model – the N-STREAMS neural network model – exemplifies ongoing attempts to accommodate a broad range of both behavioral and neurobiological data within a CQ-consistent theory.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>15589629</pmid><doi>10.1016/j.humov.2004.10.008</doi><tpages>48</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9457
ispartof Human movement science, 2004-11, Vol.23 (5), p.699-746
issn 0167-9457
1872-7646
language eng
recordid cdi_proquest_miscellaneous_67166881
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Attention - physiology
Basal ganglia
Basal Ganglia - physiology
Biological and medical sciences
Brain - physiology
Cerebellum
Cerebellum - physiology
Cerebral Cortex - physiology
Cognitive processes
Competitive queuing
Computer Simulation
Computer simulations
Fundamental and applied biological sciences. Psychology
Humans
Models, Neurological
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Motor performance
Neural networks
Neural Networks (Computer)
Prefrontal cortex
Prefrontal Cortex - physiology
Primacy
Primates
Psychomotor Performance - physiology
Reaction Time - physiology
Serial learning
Serial Learning - physiology
Vertebrates: nervous system and sense organs
Working memory
title Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20production%20of%20movement%20sequences:%20Behavioral,%20neurophysiological,%20and%20modeling%20perspectives&rft.jtitle=Human%20movement%20science&rft.au=Rhodes,%20Bradley%20J.&rft.date=2004-11-01&rft.volume=23&rft.issue=5&rft.spage=699&rft.epage=746&rft.pages=699-746&rft.issn=0167-9457&rft.eissn=1872-7646&rft.coden=HMSCDO&rft_id=info:doi/10.1016/j.humov.2004.10.008&rft_dat=%3Cproquest_cross%3E67166881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17521542&rft_id=info:pmid/15589629&rft_els_id=S0167945704000867&rfr_iscdi=true