The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis

MicroRNAs (miRNAs) represent a family of small noncoding RNAs that are found in plants and animals (for recent reviews, see [1–5]). miRNAs are expressed in a developmentally and tissue-specific manner and regulate the translational efficiency and stability of partial or fully sequence-complementary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2004-12, Vol.14 (23), p.2162-2167
Hauptverfasser: Landthaler, Markus, Yalcin, Abdullah, Tuschl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 23
container_start_page 2162
container_title Current biology
container_volume 14
creator Landthaler, Markus
Yalcin, Abdullah
Tuschl, Thomas
description MicroRNAs (miRNAs) represent a family of small noncoding RNAs that are found in plants and animals (for recent reviews, see [1–5]). miRNAs are expressed in a developmentally and tissue-specific manner and regulate the translational efficiency and stability of partial or fully sequence-complementary mRNAs. miRNAs are excised in a stepwise process from double-stranded RNA precursors that are embedded in long RNA polymerase II primary transcripts (pri-miRNA) [6–10]. Drosha RNase III catalyzes the first excision event, the release in the nucleus [11–13] of a hairpin RNA (pre-miRNA), which is followed by export of the pre-miRNA to the cytoplasm [14–16] and further processing by Dicer to mature miRNAs [17–22]. Here, we characterize the human DGCR8, the DiGeorge syndrome critical region gene 8, and its Drosophila melanogaster homolog. We provide biochemical and cell-based readouts to demonstrate the requirement of DGCR8 for the maturation of miRNA primary transcripts. RNAi knockdown experiments of fly and human DGCR8 resulted in accumulation of pri-miRNAs and reduction of pre-miRNAs and mature miRNAs. Our results suggest that DGCR8 and Drosha interact in human cells and reside in a functional pri-miRNA processing complex.
doi_str_mv 10.1016/j.cub.2004.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67166440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982204008693</els_id><sourcerecordid>17817933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e6db4740bdb0c620e5246fe7d270c0703adecee2507d625987c3a2a37e99d92e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURa0K1A6lH8AGecUuwc9J7FishinMVKpAKu3acuw3waMkbu2kUv8eVzMSO1i9zblHT_cS8gFYCQzE50Npl67kjNUlQMkYnJEVtFIVrK6bN2TFlGCFajm_IO9SOmSAt0qckwtomlaBgBWZ738j3S2jmei132KIPdJfL5OLYUS6iX721gz0DnsfJrrFCWlLzeTozZzodUlHHMwUepNmjHQXxjCEnq4j5sTT4iM6ug-Rjv7ux5p-9aHPguTTe_J2b4aEV6d7SR6-f7vf7Irbn9ubzfq2sLWCuUDhulrWrHMds4IzbHgt9igdl8wyySrj0CLyhkkneKNaaSvDTSVRKac4Vpfk09H7GMPTgmnWo08Wh_wzhiVpIUGIumb_BUG2IFVVZRCOoI0hpYh7_Rj9aOKLBqZfN9EHnTfRr5toAJ0rz5mPJ_nSjej-Jk4jZODLEcDcxbPHqJP1OFl0uUE7axf8P_R_AGNfm3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17817933</pqid></control><display><type>article</type><title>The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Landthaler, Markus ; Yalcin, Abdullah ; Tuschl, Thomas</creator><creatorcontrib>Landthaler, Markus ; Yalcin, Abdullah ; Tuschl, Thomas</creatorcontrib><description>MicroRNAs (miRNAs) represent a family of small noncoding RNAs that are found in plants and animals (for recent reviews, see [1–5]). miRNAs are expressed in a developmentally and tissue-specific manner and regulate the translational efficiency and stability of partial or fully sequence-complementary mRNAs. miRNAs are excised in a stepwise process from double-stranded RNA precursors that are embedded in long RNA polymerase II primary transcripts (pri-miRNA) [6–10]. Drosha RNase III catalyzes the first excision event, the release in the nucleus [11–13] of a hairpin RNA (pre-miRNA), which is followed by export of the pre-miRNA to the cytoplasm [14–16] and further processing by Dicer to mature miRNAs [17–22]. Here, we characterize the human DGCR8, the DiGeorge syndrome critical region gene 8, and its Drosophila melanogaster homolog. We provide biochemical and cell-based readouts to demonstrate the requirement of DGCR8 for the maturation of miRNA primary transcripts. RNAi knockdown experiments of fly and human DGCR8 resulted in accumulation of pri-miRNAs and reduction of pre-miRNAs and mature miRNAs. Our results suggest that DGCR8 and Drosha interact in human cells and reside in a functional pri-miRNA processing complex.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2004.11.001</identifier><identifier>PMID: 15589161</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Blotting, Northern ; Blotting, Western ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila Proteins - metabolism ; Gene Components ; Gene Expression Regulation ; HeLa Cells ; Humans ; MicroRNAs - biosynthesis ; Oligonucleotides ; Plasmids - genetics ; Protein Structure, Tertiary ; Proteins - genetics ; Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III - metabolism ; RNA Interference ; RNA Polymerase II - metabolism ; RNA, Messenger - metabolism ; RNA-Binding Proteins</subject><ispartof>Current biology, 2004-12, Vol.14 (23), p.2162-2167</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e6db4740bdb0c620e5246fe7d270c0703adecee2507d625987c3a2a37e99d92e3</citedby><cites>FETCH-LOGICAL-c491t-e6db4740bdb0c620e5246fe7d270c0703adecee2507d625987c3a2a37e99d92e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982204008693$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15589161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landthaler, Markus</creatorcontrib><creatorcontrib>Yalcin, Abdullah</creatorcontrib><creatorcontrib>Tuschl, Thomas</creatorcontrib><title>The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>MicroRNAs (miRNAs) represent a family of small noncoding RNAs that are found in plants and animals (for recent reviews, see [1–5]). miRNAs are expressed in a developmentally and tissue-specific manner and regulate the translational efficiency and stability of partial or fully sequence-complementary mRNAs. miRNAs are excised in a stepwise process from double-stranded RNA precursors that are embedded in long RNA polymerase II primary transcripts (pri-miRNA) [6–10]. Drosha RNase III catalyzes the first excision event, the release in the nucleus [11–13] of a hairpin RNA (pre-miRNA), which is followed by export of the pre-miRNA to the cytoplasm [14–16] and further processing by Dicer to mature miRNAs [17–22]. Here, we characterize the human DGCR8, the DiGeorge syndrome critical region gene 8, and its Drosophila melanogaster homolog. We provide biochemical and cell-based readouts to demonstrate the requirement of DGCR8 for the maturation of miRNA primary transcripts. RNAi knockdown experiments of fly and human DGCR8 resulted in accumulation of pri-miRNAs and reduction of pre-miRNAs and mature miRNAs. Our results suggest that DGCR8 and Drosha interact in human cells and reside in a functional pri-miRNA processing complex.</description><subject>Animals</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Gene Components</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>MicroRNAs - biosynthesis</subject><subject>Oligonucleotides</subject><subject>Plasmids - genetics</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonuclease III - metabolism</subject><subject>RNA Interference</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURa0K1A6lH8AGecUuwc9J7FishinMVKpAKu3acuw3waMkbu2kUv8eVzMSO1i9zblHT_cS8gFYCQzE50Npl67kjNUlQMkYnJEVtFIVrK6bN2TFlGCFajm_IO9SOmSAt0qckwtomlaBgBWZ738j3S2jmei132KIPdJfL5OLYUS6iX721gz0DnsfJrrFCWlLzeTozZzodUlHHMwUepNmjHQXxjCEnq4j5sTT4iM6ug-Rjv7ux5p-9aHPguTTe_J2b4aEV6d7SR6-f7vf7Irbn9ubzfq2sLWCuUDhulrWrHMds4IzbHgt9igdl8wyySrj0CLyhkkneKNaaSvDTSVRKac4Vpfk09H7GMPTgmnWo08Wh_wzhiVpIUGIumb_BUG2IFVVZRCOoI0hpYh7_Rj9aOKLBqZfN9EHnTfRr5toAJ0rz5mPJ_nSjej-Jk4jZODLEcDcxbPHqJP1OFl0uUE7axf8P_R_AGNfm3k</recordid><startdate>20041214</startdate><enddate>20041214</enddate><creator>Landthaler, Markus</creator><creator>Yalcin, Abdullah</creator><creator>Tuschl, Thomas</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041214</creationdate><title>The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis</title><author>Landthaler, Markus ; Yalcin, Abdullah ; Tuschl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e6db4740bdb0c620e5246fe7d270c0703adecee2507d625987c3a2a37e99d92e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Gene Components</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>MicroRNAs - biosynthesis</topic><topic>Oligonucleotides</topic><topic>Plasmids - genetics</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonuclease III - metabolism</topic><topic>RNA Interference</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landthaler, Markus</creatorcontrib><creatorcontrib>Yalcin, Abdullah</creatorcontrib><creatorcontrib>Tuschl, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landthaler, Markus</au><au>Yalcin, Abdullah</au><au>Tuschl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2004-12-14</date><risdate>2004</risdate><volume>14</volume><issue>23</issue><spage>2162</spage><epage>2167</epage><pages>2162-2167</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>MicroRNAs (miRNAs) represent a family of small noncoding RNAs that are found in plants and animals (for recent reviews, see [1–5]). miRNAs are expressed in a developmentally and tissue-specific manner and regulate the translational efficiency and stability of partial or fully sequence-complementary mRNAs. miRNAs are excised in a stepwise process from double-stranded RNA precursors that are embedded in long RNA polymerase II primary transcripts (pri-miRNA) [6–10]. Drosha RNase III catalyzes the first excision event, the release in the nucleus [11–13] of a hairpin RNA (pre-miRNA), which is followed by export of the pre-miRNA to the cytoplasm [14–16] and further processing by Dicer to mature miRNAs [17–22]. Here, we characterize the human DGCR8, the DiGeorge syndrome critical region gene 8, and its Drosophila melanogaster homolog. We provide biochemical and cell-based readouts to demonstrate the requirement of DGCR8 for the maturation of miRNA primary transcripts. RNAi knockdown experiments of fly and human DGCR8 resulted in accumulation of pri-miRNAs and reduction of pre-miRNAs and mature miRNAs. Our results suggest that DGCR8 and Drosha interact in human cells and reside in a functional pri-miRNA processing complex.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>15589161</pmid><doi>10.1016/j.cub.2004.11.001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2004-12, Vol.14 (23), p.2162-2167
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_67166440
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Blotting, Northern
Blotting, Western
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila Proteins - metabolism
Gene Components
Gene Expression Regulation
HeLa Cells
Humans
MicroRNAs - biosynthesis
Oligonucleotides
Plasmids - genetics
Protein Structure, Tertiary
Proteins - genetics
Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Ribonuclease III - metabolism
RNA Interference
RNA Polymerase II - metabolism
RNA, Messenger - metabolism
RNA-Binding Proteins
title The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Human%20DiGeorge%20Syndrome%20Critical%20Region%20Gene%208%20and%20Its%20D.%20melanogaster%20Homolog%20Are%20Required%20for%20miRNA%20Biogenesis&rft.jtitle=Current%20biology&rft.au=Landthaler,%20Markus&rft.date=2004-12-14&rft.volume=14&rft.issue=23&rft.spage=2162&rft.epage=2167&rft.pages=2162-2167&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2004.11.001&rft_dat=%3Cproquest_cross%3E17817933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17817933&rft_id=info:pmid/15589161&rft_els_id=S0960982204008693&rfr_iscdi=true