A critical evaluation of genomic control methods for genetic association studies

Population stratification is an important potential confounder of genetic case‐control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct χ2 test statistics which ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic epidemiology 2009-05, Vol.33 (4), p.290-298
Hauptverfasser: Dadd, Tony, Weale, Michael E., Lewis, Cathryn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 4
container_start_page 290
container_title Genetic epidemiology
container_volume 33
creator Dadd, Tony
Weale, Michael E.
Lewis, Cathryn M.
description Population stratification is an important potential confounder of genetic case‐control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct χ2 test statistics which are presumed to be inflated by a factor λ; this may be estimated by a summary χ2 value (λmedian or λmean) from a set of unlinked markers. Many studies applying GC methods have used fewer than 50 unlinked markers and an important question is whether this can adequately correct for population stratification. We assess the behavior of GC methods in imbalanced case‐control studies using simulation. SNPs are sampled from two subpopulations with intra‐continental levels of FST (≤0.005) and sampling schemata ranging from balanced to completely imbalanced between subpopulations. The sampling properties of λmedian and λmean are explored using 6–1,600 unlinked markers to estimate Type 1 error and power empirically. GC corrections based on the χ2‐distribution (GCmedian or GCmean) can be anti‐conservative even when more than 100 single nucleotide polymorphisms (SNPs) are genotyped and realistic levels of population stratification exist. The GCF procedure performs well over a wider range of conditions, only becoming anti‐conservative at low levels of α and with fewer than 25 SNPs genotyped. A substantial loss of power can arise when population stratification is present, but this is largely independent of the number of SNPs used. A literature survey shows that most studies applying GC have used GCmedian or GCmean, rather than GCF, which is the most appropriate GC correction method. Genet. Epidemiol. 2009. © 2008 Wiley Liss, Inc.
doi_str_mv 10.1002/gepi.20379
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67155179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67155179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-e18a68647e97cae2ce7ecccaa460502c7d5255ba9cbc3287853c360b15bc6be63</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EgvJY-AEoEwNSwI84jkdUoCBVwACCzXJub8GQ1MVOePx7UlJgg8nDPedI_gjZZfSQUcqPHnDuDjkVSq-QAaO6SDlXfJUMqMpYSoWWG2QzxidKGcu0XCcbTFPJeJENyPVxAsE1DmyV4KutWts4P0v8NHnAma8dJOBnTfBVUmPz6CcxmfqwuGHnJDZGD65XYtNOHMZtsja1VcSd5btFbs9Ob4bn6fhqdDE8HqeQ5VynyAqbF3mmUCuwyAEVAoC1WU4l5aAmkktZWg0lCF6oQgoQOS2ZLCEvMRdbZL_vzoN_aTE2pnYRsKrsDH0bTa6YlEzpf0FOpSyUzjrwoAch-BgDTs08uNqGD8OoWQxtFkObr6E7eG9ZbcsaJ7_octkOYD3w5ir8-CNlRqfXF9_RtHdcbPD9x7HhufuOUNLcXY7M8H4os7E4MUp8AkGemDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20558794</pqid></control><display><type>article</type><title>A critical evaluation of genomic control methods for genetic association studies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dadd, Tony ; Weale, Michael E. ; Lewis, Cathryn M.</creator><creatorcontrib>Dadd, Tony ; Weale, Michael E. ; Lewis, Cathryn M.</creatorcontrib><description>Population stratification is an important potential confounder of genetic case‐control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct χ2 test statistics which are presumed to be inflated by a factor λ; this may be estimated by a summary χ2 value (λmedian or λmean) from a set of unlinked markers. Many studies applying GC methods have used fewer than 50 unlinked markers and an important question is whether this can adequately correct for population stratification. We assess the behavior of GC methods in imbalanced case‐control studies using simulation. SNPs are sampled from two subpopulations with intra‐continental levels of FST (≤0.005) and sampling schemata ranging from balanced to completely imbalanced between subpopulations. The sampling properties of λmedian and λmean are explored using 6–1,600 unlinked markers to estimate Type 1 error and power empirically. GC corrections based on the χ2‐distribution (GCmedian or GCmean) can be anti‐conservative even when more than 100 single nucleotide polymorphisms (SNPs) are genotyped and realistic levels of population stratification exist. The GCF procedure performs well over a wider range of conditions, only becoming anti‐conservative at low levels of α and with fewer than 25 SNPs genotyped. A substantial loss of power can arise when population stratification is present, but this is largely independent of the number of SNPs used. A literature survey shows that most studies applying GC have used GCmedian or GCmean, rather than GCF, which is the most appropriate GC correction method. Genet. Epidemiol. 2009. © 2008 Wiley Liss, Inc.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.20379</identifier><identifier>PMID: 19051284</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alleles ; Epidemiologic Methods ; Gene Frequency ; Genetic Predisposition to Disease ; Genetics, Population - statistics &amp; numerical data ; Genome-Wide Association Study - statistics &amp; numerical data ; Genomics - statistics &amp; numerical data ; Humans ; Polymorphism, Single Nucleotide ; population stratification ; power ; Risk Factors ; Type 1 error</subject><ispartof>Genetic epidemiology, 2009-05, Vol.33 (4), p.290-298</ispartof><rights>2008 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-e18a68647e97cae2ce7ecccaa460502c7d5255ba9cbc3287853c360b15bc6be63</citedby><cites>FETCH-LOGICAL-c4629-e18a68647e97cae2ce7ecccaa460502c7d5255ba9cbc3287853c360b15bc6be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.20379$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.20379$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19051284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dadd, Tony</creatorcontrib><creatorcontrib>Weale, Michael E.</creatorcontrib><creatorcontrib>Lewis, Cathryn M.</creatorcontrib><title>A critical evaluation of genomic control methods for genetic association studies</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>Population stratification is an important potential confounder of genetic case‐control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct χ2 test statistics which are presumed to be inflated by a factor λ; this may be estimated by a summary χ2 value (λmedian or λmean) from a set of unlinked markers. Many studies applying GC methods have used fewer than 50 unlinked markers and an important question is whether this can adequately correct for population stratification. We assess the behavior of GC methods in imbalanced case‐control studies using simulation. SNPs are sampled from two subpopulations with intra‐continental levels of FST (≤0.005) and sampling schemata ranging from balanced to completely imbalanced between subpopulations. The sampling properties of λmedian and λmean are explored using 6–1,600 unlinked markers to estimate Type 1 error and power empirically. GC corrections based on the χ2‐distribution (GCmedian or GCmean) can be anti‐conservative even when more than 100 single nucleotide polymorphisms (SNPs) are genotyped and realistic levels of population stratification exist. The GCF procedure performs well over a wider range of conditions, only becoming anti‐conservative at low levels of α and with fewer than 25 SNPs genotyped. A substantial loss of power can arise when population stratification is present, but this is largely independent of the number of SNPs used. A literature survey shows that most studies applying GC have used GCmedian or GCmean, rather than GCF, which is the most appropriate GC correction method. Genet. Epidemiol. 2009. © 2008 Wiley Liss, Inc.</description><subject>Alleles</subject><subject>Epidemiologic Methods</subject><subject>Gene Frequency</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetics, Population - statistics &amp; numerical data</subject><subject>Genome-Wide Association Study - statistics &amp; numerical data</subject><subject>Genomics - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Polymorphism, Single Nucleotide</subject><subject>population stratification</subject><subject>power</subject><subject>Risk Factors</subject><subject>Type 1 error</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EgvJY-AEoEwNSwI84jkdUoCBVwACCzXJub8GQ1MVOePx7UlJgg8nDPedI_gjZZfSQUcqPHnDuDjkVSq-QAaO6SDlXfJUMqMpYSoWWG2QzxidKGcu0XCcbTFPJeJENyPVxAsE1DmyV4KutWts4P0v8NHnAma8dJOBnTfBVUmPz6CcxmfqwuGHnJDZGD65XYtNOHMZtsja1VcSd5btFbs9Ob4bn6fhqdDE8HqeQ5VynyAqbF3mmUCuwyAEVAoC1WU4l5aAmkktZWg0lCF6oQgoQOS2ZLCEvMRdbZL_vzoN_aTE2pnYRsKrsDH0bTa6YlEzpf0FOpSyUzjrwoAch-BgDTs08uNqGD8OoWQxtFkObr6E7eG9ZbcsaJ7_octkOYD3w5ir8-CNlRqfXF9_RtHdcbPD9x7HhufuOUNLcXY7M8H4os7E4MUp8AkGemDk</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Dadd, Tony</creator><creator>Weale, Michael E.</creator><creator>Lewis, Cathryn M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200905</creationdate><title>A critical evaluation of genomic control methods for genetic association studies</title><author>Dadd, Tony ; Weale, Michael E. ; Lewis, Cathryn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-e18a68647e97cae2ce7ecccaa460502c7d5255ba9cbc3287853c360b15bc6be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alleles</topic><topic>Epidemiologic Methods</topic><topic>Gene Frequency</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetics, Population - statistics &amp; numerical data</topic><topic>Genome-Wide Association Study - statistics &amp; numerical data</topic><topic>Genomics - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Polymorphism, Single Nucleotide</topic><topic>population stratification</topic><topic>power</topic><topic>Risk Factors</topic><topic>Type 1 error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadd, Tony</creatorcontrib><creatorcontrib>Weale, Michael E.</creatorcontrib><creatorcontrib>Lewis, Cathryn M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadd, Tony</au><au>Weale, Michael E.</au><au>Lewis, Cathryn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A critical evaluation of genomic control methods for genetic association studies</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>2009-05</date><risdate>2009</risdate><volume>33</volume><issue>4</issue><spage>290</spage><epage>298</epage><pages>290-298</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>Population stratification is an important potential confounder of genetic case‐control association studies. For replication studies, limited availability of samples may lead to imbalanced sampling from heterogeneous populations. Genomic control (GC) can be used to correct χ2 test statistics which are presumed to be inflated by a factor λ; this may be estimated by a summary χ2 value (λmedian or λmean) from a set of unlinked markers. Many studies applying GC methods have used fewer than 50 unlinked markers and an important question is whether this can adequately correct for population stratification. We assess the behavior of GC methods in imbalanced case‐control studies using simulation. SNPs are sampled from two subpopulations with intra‐continental levels of FST (≤0.005) and sampling schemata ranging from balanced to completely imbalanced between subpopulations. The sampling properties of λmedian and λmean are explored using 6–1,600 unlinked markers to estimate Type 1 error and power empirically. GC corrections based on the χ2‐distribution (GCmedian or GCmean) can be anti‐conservative even when more than 100 single nucleotide polymorphisms (SNPs) are genotyped and realistic levels of population stratification exist. The GCF procedure performs well over a wider range of conditions, only becoming anti‐conservative at low levels of α and with fewer than 25 SNPs genotyped. A substantial loss of power can arise when population stratification is present, but this is largely independent of the number of SNPs used. A literature survey shows that most studies applying GC have used GCmedian or GCmean, rather than GCF, which is the most appropriate GC correction method. Genet. Epidemiol. 2009. © 2008 Wiley Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19051284</pmid><doi>10.1002/gepi.20379</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2009-05, Vol.33 (4), p.290-298
issn 0741-0395
1098-2272
language eng
recordid cdi_proquest_miscellaneous_67155179
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alleles
Epidemiologic Methods
Gene Frequency
Genetic Predisposition to Disease
Genetics, Population - statistics & numerical data
Genome-Wide Association Study - statistics & numerical data
Genomics - statistics & numerical data
Humans
Polymorphism, Single Nucleotide
population stratification
power
Risk Factors
Type 1 error
title A critical evaluation of genomic control methods for genetic association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20critical%20evaluation%20of%20genomic%20control%20methods%20for%20genetic%20association%20studies&rft.jtitle=Genetic%20epidemiology&rft.au=Dadd,%20Tony&rft.date=2009-05&rft.volume=33&rft.issue=4&rft.spage=290&rft.epage=298&rft.pages=290-298&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.20379&rft_dat=%3Cproquest_cross%3E67155179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20558794&rft_id=info:pmid/19051284&rfr_iscdi=true