Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells
Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using...
Gespeichert in:
Veröffentlicht in: | Stem cells (Dayton, Ohio) Ohio), 2004-01, Vol.22 (7), p.1305-1320 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1320 |
---|---|
container_issue | 7 |
container_start_page | 1305 |
container_title | Stem cells (Dayton, Ohio) |
container_volume | 22 |
creator | Meeson, Annette P. Hawke, Thomas J. Graham, Sarabeth Jiang, Nan Elterman, Joel Hutcheson, Kelley DiMaio, J. Michael Gallardo, Teresa D. Garry, Daniel J. |
description | Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle. |
doi_str_mv | 10.1634/stemcells.2004-0077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67147174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17762105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQQBdRbK3-AkFy8pa6s58JnqTUL1oUW8_LJplIdNPUbIL035vYqkc9zSy8eSyPkFOgY1BcXPgGyxSd82NGqQgp1XqPDEGKOBQxRPvdTpUKJY3jATny_pVSEDKKDskApNSxEtGQ3E86Q-tsHdhVFswrh-nX6wlfutkU1Sqo8mDxhg4b64J561OHwaLIMHis1t9IL_HH5CC3zuPJbo7I8_V0ObkNZw83d5OrWZgKDjLkXFqGClImMJOC8dTGmMQ60wnYDAFjFFRzFWlKE82UZFyqJKcJAyHSLOIjcr71ruvqvUXfmLLwfQi7wqr1RmkQGrT4EwStFQMqO5BvwbSuvK8xN-u6KG29MUBN39r8tDZ9a9O37q7Odvo2KTH7vdnF7YDLLfBRONz8x2kWy-mcMeDdpz4BdB6O4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17762105</pqid></control><display><type>article</type><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</creator><creatorcontrib>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</creatorcontrib><description>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1634/stemcells.2004-0077</identifier><identifier>PMID: 15579648</identifier><language>eng</language><publisher>Bristol: John Wiley & Sons, Ltd</publisher><subject>Animals ; ATP Binding Cassette Transporter, Sub-Family G, Member 2 ; ATP-Binding Cassette Transporters - physiology ; Bone marrow ; Cell Differentiation ; Cell Separation ; Cobra Cardiotoxin Proteins - pharmacology ; Flow Cytometry ; Forkhead Transcription Factors ; Foxk1 ; Green Fluorescent Proteins - metabolism ; Immunohistochemistry ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles - pathology ; Muscular Dystrophies - pathology ; Myoblast ; Neoplasm Proteins - physiology ; Nuclear Proteins - genetics ; Nucleic Acid Hybridization ; Phenotype ; Regeneration ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - metabolism ; Satellite Cells, Skeletal Muscle - cytology ; Satellite Cells, Skeletal Muscle - physiology ; Side population cells ; Skeletal muscle ; Stem Cells - cytology ; Time Factors ; Transcription Factors - genetics ; Transcription, Genetic</subject><ispartof>Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1305-1320</ispartof><rights>Copyright © 2004 AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</citedby><cites>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15579648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeson, Annette P.</creatorcontrib><creatorcontrib>Hawke, Thomas J.</creatorcontrib><creatorcontrib>Graham, Sarabeth</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Elterman, Joel</creatorcontrib><creatorcontrib>Hutcheson, Kelley</creatorcontrib><creatorcontrib>DiMaio, J. Michael</creatorcontrib><creatorcontrib>Gallardo, Teresa D.</creatorcontrib><creatorcontrib>Garry, Daniel J.</creatorcontrib><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</description><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Sub-Family G, Member 2</subject><subject>ATP-Binding Cassette Transporters - physiology</subject><subject>Bone marrow</subject><subject>Cell Differentiation</subject><subject>Cell Separation</subject><subject>Cobra Cardiotoxin Proteins - pharmacology</subject><subject>Flow Cytometry</subject><subject>Forkhead Transcription Factors</subject><subject>Foxk1</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles - pathology</subject><subject>Muscular Dystrophies - pathology</subject><subject>Myoblast</subject><subject>Neoplasm Proteins - physiology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleic Acid Hybridization</subject><subject>Phenotype</subject><subject>Regeneration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - metabolism</subject><subject>Satellite Cells, Skeletal Muscle - cytology</subject><subject>Satellite Cells, Skeletal Muscle - physiology</subject><subject>Side population cells</subject><subject>Skeletal muscle</subject><subject>Stem Cells - cytology</subject><subject>Time Factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQQBdRbK3-AkFy8pa6s58JnqTUL1oUW8_LJplIdNPUbIL035vYqkc9zSy8eSyPkFOgY1BcXPgGyxSd82NGqQgp1XqPDEGKOBQxRPvdTpUKJY3jATny_pVSEDKKDskApNSxEtGQ3E86Q-tsHdhVFswrh-nX6wlfutkU1Sqo8mDxhg4b64J561OHwaLIMHis1t9IL_HH5CC3zuPJbo7I8_V0ObkNZw83d5OrWZgKDjLkXFqGClImMJOC8dTGmMQ60wnYDAFjFFRzFWlKE82UZFyqJKcJAyHSLOIjcr71ruvqvUXfmLLwfQi7wqr1RmkQGrT4EwStFQMqO5BvwbSuvK8xN-u6KG29MUBN39r8tDZ9a9O37q7Odvo2KTH7vdnF7YDLLfBRONz8x2kWy-mcMeDdpz4BdB6O4A</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Meeson, Annette P.</creator><creator>Hawke, Thomas J.</creator><creator>Graham, Sarabeth</creator><creator>Jiang, Nan</creator><creator>Elterman, Joel</creator><creator>Hutcheson, Kelley</creator><creator>DiMaio, J. Michael</creator><creator>Gallardo, Teresa D.</creator><creator>Garry, Daniel J.</creator><general>John Wiley & Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><author>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Sub-Family G, Member 2</topic><topic>ATP-Binding Cassette Transporters - physiology</topic><topic>Bone marrow</topic><topic>Cell Differentiation</topic><topic>Cell Separation</topic><topic>Cobra Cardiotoxin Proteins - pharmacology</topic><topic>Flow Cytometry</topic><topic>Forkhead Transcription Factors</topic><topic>Foxk1</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles - pathology</topic><topic>Muscular Dystrophies - pathology</topic><topic>Myoblast</topic><topic>Neoplasm Proteins - physiology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleic Acid Hybridization</topic><topic>Phenotype</topic><topic>Regeneration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - metabolism</topic><topic>Satellite Cells, Skeletal Muscle - cytology</topic><topic>Satellite Cells, Skeletal Muscle - physiology</topic><topic>Side population cells</topic><topic>Skeletal muscle</topic><topic>Stem Cells - cytology</topic><topic>Time Factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeson, Annette P.</creatorcontrib><creatorcontrib>Hawke, Thomas J.</creatorcontrib><creatorcontrib>Graham, Sarabeth</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Elterman, Joel</creatorcontrib><creatorcontrib>Hutcheson, Kelley</creatorcontrib><creatorcontrib>DiMaio, J. Michael</creatorcontrib><creatorcontrib>Gallardo, Teresa D.</creatorcontrib><creatorcontrib>Garry, Daniel J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeson, Annette P.</au><au>Hawke, Thomas J.</au><au>Graham, Sarabeth</au><au>Jiang, Nan</au><au>Elterman, Joel</au><au>Hutcheson, Kelley</au><au>DiMaio, J. Michael</au><au>Gallardo, Teresa D.</au><au>Garry, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>22</volume><issue>7</issue><spage>1305</spage><epage>1320</epage><pages>1305-1320</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</abstract><cop>Bristol</cop><pub>John Wiley & Sons, Ltd</pub><pmid>15579648</pmid><doi>10.1634/stemcells.2004-0077</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5099 |
ispartof | Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1305-1320 |
issn | 1066-5099 1549-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_67147174 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Animals ATP Binding Cassette Transporter, Sub-Family G, Member 2 ATP-Binding Cassette Transporters - physiology Bone marrow Cell Differentiation Cell Separation Cobra Cardiotoxin Proteins - pharmacology Flow Cytometry Forkhead Transcription Factors Foxk1 Green Fluorescent Proteins - metabolism Immunohistochemistry Mice Mice, Inbred C57BL Mice, Transgenic Muscle, Skeletal - cytology Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscles - pathology Muscular Dystrophies - pathology Myoblast Neoplasm Proteins - physiology Nuclear Proteins - genetics Nucleic Acid Hybridization Phenotype Regeneration Reverse Transcriptase Polymerase Chain Reaction RNA - metabolism Satellite Cells, Skeletal Muscle - cytology Satellite Cells, Skeletal Muscle - physiology Side population cells Skeletal muscle Stem Cells - cytology Time Factors Transcription Factors - genetics Transcription, Genetic |
title | Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20and%20Molecular%20Regulation%20of%20Skeletal%20Muscle%20Side%20Population%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Meeson,%20Annette%20P.&rft.date=2004-01-01&rft.volume=22&rft.issue=7&rft.spage=1305&rft.epage=1320&rft.pages=1305-1320&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1634/stemcells.2004-0077&rft_dat=%3Cproquest_cross%3E17762105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17762105&rft_id=info:pmid/15579648&rfr_iscdi=true |