Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells

Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells (Dayton, Ohio) Ohio), 2004-01, Vol.22 (7), p.1305-1320
Hauptverfasser: Meeson, Annette P., Hawke, Thomas J., Graham, Sarabeth, Jiang, Nan, Elterman, Joel, Hutcheson, Kelley, DiMaio, J. Michael, Gallardo, Teresa D., Garry, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 7
container_start_page 1305
container_title Stem cells (Dayton, Ohio)
container_volume 22
creator Meeson, Annette P.
Hawke, Thomas J.
Graham, Sarabeth
Jiang, Nan
Elterman, Joel
Hutcheson, Kelley
DiMaio, J. Michael
Gallardo, Teresa D.
Garry, Daniel J.
description Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.
doi_str_mv 10.1634/stemcells.2004-0077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67147174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17762105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQQBdRbK3-AkFy8pa6s58JnqTUL1oUW8_LJplIdNPUbIL035vYqkc9zSy8eSyPkFOgY1BcXPgGyxSd82NGqQgp1XqPDEGKOBQxRPvdTpUKJY3jATny_pVSEDKKDskApNSxEtGQ3E86Q-tsHdhVFswrh-nX6wlfutkU1Sqo8mDxhg4b64J561OHwaLIMHis1t9IL_HH5CC3zuPJbo7I8_V0ObkNZw83d5OrWZgKDjLkXFqGClImMJOC8dTGmMQ60wnYDAFjFFRzFWlKE82UZFyqJKcJAyHSLOIjcr71ruvqvUXfmLLwfQi7wqr1RmkQGrT4EwStFQMqO5BvwbSuvK8xN-u6KG29MUBN39r8tDZ9a9O37q7Odvo2KTH7vdnF7YDLLfBRONz8x2kWy-mcMeDdpz4BdB6O4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17762105</pqid></control><display><type>article</type><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</creator><creatorcontrib>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</creatorcontrib><description>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1634/stemcells.2004-0077</identifier><identifier>PMID: 15579648</identifier><language>eng</language><publisher>Bristol: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; ATP Binding Cassette Transporter, Sub-Family G, Member 2 ; ATP-Binding Cassette Transporters - physiology ; Bone marrow ; Cell Differentiation ; Cell Separation ; Cobra Cardiotoxin Proteins - pharmacology ; Flow Cytometry ; Forkhead Transcription Factors ; Foxk1 ; Green Fluorescent Proteins - metabolism ; Immunohistochemistry ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles - pathology ; Muscular Dystrophies - pathology ; Myoblast ; Neoplasm Proteins - physiology ; Nuclear Proteins - genetics ; Nucleic Acid Hybridization ; Phenotype ; Regeneration ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - metabolism ; Satellite Cells, Skeletal Muscle - cytology ; Satellite Cells, Skeletal Muscle - physiology ; Side population cells ; Skeletal muscle ; Stem Cells - cytology ; Time Factors ; Transcription Factors - genetics ; Transcription, Genetic</subject><ispartof>Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1305-1320</ispartof><rights>Copyright © 2004 AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</citedby><cites>FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15579648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeson, Annette P.</creatorcontrib><creatorcontrib>Hawke, Thomas J.</creatorcontrib><creatorcontrib>Graham, Sarabeth</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Elterman, Joel</creatorcontrib><creatorcontrib>Hutcheson, Kelley</creatorcontrib><creatorcontrib>DiMaio, J. Michael</creatorcontrib><creatorcontrib>Gallardo, Teresa D.</creatorcontrib><creatorcontrib>Garry, Daniel J.</creatorcontrib><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</description><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Sub-Family G, Member 2</subject><subject>ATP-Binding Cassette Transporters - physiology</subject><subject>Bone marrow</subject><subject>Cell Differentiation</subject><subject>Cell Separation</subject><subject>Cobra Cardiotoxin Proteins - pharmacology</subject><subject>Flow Cytometry</subject><subject>Forkhead Transcription Factors</subject><subject>Foxk1</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles - pathology</subject><subject>Muscular Dystrophies - pathology</subject><subject>Myoblast</subject><subject>Neoplasm Proteins - physiology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleic Acid Hybridization</subject><subject>Phenotype</subject><subject>Regeneration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - metabolism</subject><subject>Satellite Cells, Skeletal Muscle - cytology</subject><subject>Satellite Cells, Skeletal Muscle - physiology</subject><subject>Side population cells</subject><subject>Skeletal muscle</subject><subject>Stem Cells - cytology</subject><subject>Time Factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQQBdRbK3-AkFy8pa6s58JnqTUL1oUW8_LJplIdNPUbIL035vYqkc9zSy8eSyPkFOgY1BcXPgGyxSd82NGqQgp1XqPDEGKOBQxRPvdTpUKJY3jATny_pVSEDKKDskApNSxEtGQ3E86Q-tsHdhVFswrh-nX6wlfutkU1Sqo8mDxhg4b64J561OHwaLIMHis1t9IL_HH5CC3zuPJbo7I8_V0ObkNZw83d5OrWZgKDjLkXFqGClImMJOC8dTGmMQ60wnYDAFjFFRzFWlKE82UZFyqJKcJAyHSLOIjcr71ruvqvUXfmLLwfQi7wqr1RmkQGrT4EwStFQMqO5BvwbSuvK8xN-u6KG29MUBN39r8tDZ9a9O37q7Odvo2KTH7vdnF7YDLLfBRONz8x2kWy-mcMeDdpz4BdB6O4A</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Meeson, Annette P.</creator><creator>Hawke, Thomas J.</creator><creator>Graham, Sarabeth</creator><creator>Jiang, Nan</creator><creator>Elterman, Joel</creator><creator>Hutcheson, Kelley</creator><creator>DiMaio, J. Michael</creator><creator>Gallardo, Teresa D.</creator><creator>Garry, Daniel J.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</title><author>Meeson, Annette P. ; Hawke, Thomas J. ; Graham, Sarabeth ; Jiang, Nan ; Elterman, Joel ; Hutcheson, Kelley ; DiMaio, J. Michael ; Gallardo, Teresa D. ; Garry, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4315-335a2e61c24ed5423ca9eb97d7b1ade1e9e407368700b72652356bf0b2144cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Sub-Family G, Member 2</topic><topic>ATP-Binding Cassette Transporters - physiology</topic><topic>Bone marrow</topic><topic>Cell Differentiation</topic><topic>Cell Separation</topic><topic>Cobra Cardiotoxin Proteins - pharmacology</topic><topic>Flow Cytometry</topic><topic>Forkhead Transcription Factors</topic><topic>Foxk1</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles - pathology</topic><topic>Muscular Dystrophies - pathology</topic><topic>Myoblast</topic><topic>Neoplasm Proteins - physiology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleic Acid Hybridization</topic><topic>Phenotype</topic><topic>Regeneration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - metabolism</topic><topic>Satellite Cells, Skeletal Muscle - cytology</topic><topic>Satellite Cells, Skeletal Muscle - physiology</topic><topic>Side population cells</topic><topic>Skeletal muscle</topic><topic>Stem Cells - cytology</topic><topic>Time Factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeson, Annette P.</creatorcontrib><creatorcontrib>Hawke, Thomas J.</creatorcontrib><creatorcontrib>Graham, Sarabeth</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Elterman, Joel</creatorcontrib><creatorcontrib>Hutcheson, Kelley</creatorcontrib><creatorcontrib>DiMaio, J. Michael</creatorcontrib><creatorcontrib>Gallardo, Teresa D.</creatorcontrib><creatorcontrib>Garry, Daniel J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeson, Annette P.</au><au>Hawke, Thomas J.</au><au>Graham, Sarabeth</au><au>Jiang, Nan</au><au>Elterman, Joel</au><au>Hutcheson, Kelley</au><au>DiMaio, J. Michael</au><au>Gallardo, Teresa D.</au><au>Garry, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>22</volume><issue>7</issue><spage>1305</spage><epage>1320</epage><pages>1305-1320</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Muscle progenitor cells (satellite cells) function in the maintenance and repair of adult skeletal muscle. Side population (SP) cells are enriched in repopulating activity and also reside in adult skeletal muscle. In this study, we observed that Abcg2 is a determinant of the SP cell phenotype. Using reverse transcription polymerase chain reaction and immunohistochemical techniques, we localized Abcg2‐expressing cells in the interstitium and in close approximation to the vasculature of adult skeletal muscle. Muscle SP cells are able to differentiate into myotubes and increase in number after cardiotoxin‐induced muscle injury. Similar to myogenic progenitor cells, muscle SP cells express Foxk1 and are decreased in number in Foxk1 mutant skeletal muscle. Using emerging technologies, we examine the molecular signature of muscle SP cells from normal, injured, and Foxk1 mutant skeletal muscle to define common and distinct molecular programs. We propose that muscle SP cells are progenitor cells that participate in repair and regeneration of adult skeletal muscle.</abstract><cop>Bristol</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>15579648</pmid><doi>10.1634/stemcells.2004-0077</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1305-1320
issn 1066-5099
1549-4918
language eng
recordid cdi_proquest_miscellaneous_67147174
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
ATP Binding Cassette Transporter, Sub-Family G, Member 2
ATP-Binding Cassette Transporters - physiology
Bone marrow
Cell Differentiation
Cell Separation
Cobra Cardiotoxin Proteins - pharmacology
Flow Cytometry
Forkhead Transcription Factors
Foxk1
Green Fluorescent Proteins - metabolism
Immunohistochemistry
Mice
Mice, Inbred C57BL
Mice, Transgenic
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscles - pathology
Muscular Dystrophies - pathology
Myoblast
Neoplasm Proteins - physiology
Nuclear Proteins - genetics
Nucleic Acid Hybridization
Phenotype
Regeneration
Reverse Transcriptase Polymerase Chain Reaction
RNA - metabolism
Satellite Cells, Skeletal Muscle - cytology
Satellite Cells, Skeletal Muscle - physiology
Side population cells
Skeletal muscle
Stem Cells - cytology
Time Factors
Transcription Factors - genetics
Transcription, Genetic
title Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20and%20Molecular%20Regulation%20of%20Skeletal%20Muscle%20Side%20Population%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Meeson,%20Annette%20P.&rft.date=2004-01-01&rft.volume=22&rft.issue=7&rft.spage=1305&rft.epage=1320&rft.pages=1305-1320&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1634/stemcells.2004-0077&rft_dat=%3Cproquest_cross%3E17762105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17762105&rft_id=info:pmid/15579648&rfr_iscdi=true