Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles

Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2004-12, Vol.6 (12), p.1189-1194
Hauptverfasser: Barlowe, Charles, Otte, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 12
container_start_page 1189
container_title Nature cell biology
container_volume 6
creator Barlowe, Charles
Otte, Stefan
description Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-α-factor (gpαf), the precursor of α-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpαf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.
doi_str_mv 10.1038/ncb1195
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67140196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183288150</galeid><sourcerecordid>A183288150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-ef3f6da57511d1fcd382e5870f5bfa4f08c9f2f93b4f41f4084fabc2fdffc1633</originalsourceid><addsrcrecordid>eNpt0W1r1TAUB_AiiptT_ARKUPDhRWeSJmn6clx8uDCYOH3li5CmJyWjN7lLUtm-_XLp1XHVFJLS_M6fHk5VPSf4lOBGfvCmJ6TjD6pjwlpRM9F2D3fvgtdt09Gj6klKVxgTxnD7uDoinBPRUXpc_bwMMTs_ouRGr6eEjPZocBFMRmWDbQ6x3sDgdIYBwc22cBQsSmGa-wnQNoYMzifkfA5odfF1vUa_IDkzQXpaPbIlEp7tz5Pqx6eP31df6vOLz-vV2XltmKC5BttYMWjeckIGYs3QSApcttjy3mpmsTSdpbZremYZsQxLZnVvqB2sNUQ0zUn1ZsktP3M9Q8pq45KBadIewpyUaAnDpBMFvvoLXoU57tpWtCzJuZAFvV7QqCdQztuQoza7RHVGZEOlJBwXdfofVZ4BNs4ED9aV7wcF7w8Kislwk0c9p6TWl98O7dvFmhhSimDVNrqNjreKYLWbt9rPu8iX-47mvkzp3u0HXMC7BaRy5UeI9y3_m_VioV7nOcKfrN_3d15Du5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222285568</pqid></control><display><type>article</type><title>Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Barlowe, Charles ; Otte, Stefan</creator><creatorcontrib>Barlowe, Charles ; Otte, Stefan</creatorcontrib><description>Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-α-factor (gpαf), the precursor of α-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpαf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1195</identifier><identifier>PMID: 15516922</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; COP-Coated Vesicles - metabolism ; Developmental Biology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fungal Proteins - metabolism ; Gene expression ; HSP70 Heat-Shock Proteins - metabolism ; letter ; Life Sciences ; Mating Factor ; Membrane Proteins - metabolism ; Membranes ; Mutagenesis ; Mutation ; Packaging ; Peptides ; Peptides - metabolism ; Physiological aspects ; Protein Binding - physiology ; Protein Precursors - metabolism ; Protein Structure, Tertiary - physiology ; Protein Transport - physiology ; Proteins ; Proteins - metabolism ; Proteins - secretion ; Receptors, Cell Surface - metabolism ; Retention ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Solubility ; Stem Cells ; Vesicular Transport Proteins ; Yeasts</subject><ispartof>Nature cell biology, 2004-12, Vol.6 (12), p.1189-1194</ispartof><rights>Springer Nature Limited 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-ef3f6da57511d1fcd382e5870f5bfa4f08c9f2f93b4f41f4084fabc2fdffc1633</citedby><cites>FETCH-LOGICAL-c462t-ef3f6da57511d1fcd382e5870f5bfa4f08c9f2f93b4f41f4084fabc2fdffc1633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1195$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1195$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15516922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlowe, Charles</creatorcontrib><creatorcontrib>Otte, Stefan</creatorcontrib><title>Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-α-factor (gpαf), the precursor of α-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpαf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>Developmental Biology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mating Factor</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Packaging</subject><subject>Peptides</subject><subject>Peptides - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Binding - physiology</subject><subject>Protein Precursors - metabolism</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Proteins - secretion</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Retention</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Solubility</subject><subject>Stem Cells</subject><subject>Vesicular Transport Proteins</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0W1r1TAUB_AiiptT_ARKUPDhRWeSJmn6clx8uDCYOH3li5CmJyWjN7lLUtm-_XLp1XHVFJLS_M6fHk5VPSf4lOBGfvCmJ6TjD6pjwlpRM9F2D3fvgtdt09Gj6klKVxgTxnD7uDoinBPRUXpc_bwMMTs_ouRGr6eEjPZocBFMRmWDbQ6x3sDgdIYBwc22cBQsSmGa-wnQNoYMzifkfA5odfF1vUa_IDkzQXpaPbIlEp7tz5Pqx6eP31df6vOLz-vV2XltmKC5BttYMWjeckIGYs3QSApcttjy3mpmsTSdpbZremYZsQxLZnVvqB2sNUQ0zUn1ZsktP3M9Q8pq45KBadIewpyUaAnDpBMFvvoLXoU57tpWtCzJuZAFvV7QqCdQztuQoza7RHVGZEOlJBwXdfofVZ4BNs4ED9aV7wcF7w8Kislwk0c9p6TWl98O7dvFmhhSimDVNrqNjreKYLWbt9rPu8iX-47mvkzp3u0HXMC7BaRy5UeI9y3_m_VioV7nOcKfrN_3d15Du5E</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Barlowe, Charles</creator><creator>Otte, Stefan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles</title><author>Barlowe, Charles ; Otte, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-ef3f6da57511d1fcd382e5870f5bfa4f08c9f2f93b4f41f4084fabc2fdffc1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>Developmental Biology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mating Factor</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Packaging</topic><topic>Peptides</topic><topic>Peptides - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Binding - physiology</topic><topic>Protein Precursors - metabolism</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Proteins - secretion</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Retention</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Solubility</topic><topic>Stem Cells</topic><topic>Vesicular Transport Proteins</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlowe, Charles</creatorcontrib><creatorcontrib>Otte, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlowe, Charles</au><au>Otte, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>6</volume><issue>12</issue><spage>1189</spage><epage>1194</epage><pages>1189-1194</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-α-factor (gpαf), the precursor of α-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpαf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15516922</pmid><doi>10.1038/ncb1195</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2004-12, Vol.6 (12), p.1189-1194
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_67140196
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biomedical and Life Sciences
Cancer Research
Cell Biology
COP-Coated Vesicles - metabolism
Developmental Biology
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fungal Proteins - metabolism
Gene expression
HSP70 Heat-Shock Proteins - metabolism
letter
Life Sciences
Mating Factor
Membrane Proteins - metabolism
Membranes
Mutagenesis
Mutation
Packaging
Peptides
Peptides - metabolism
Physiological aspects
Protein Binding - physiology
Protein Precursors - metabolism
Protein Structure, Tertiary - physiology
Protein Transport - physiology
Proteins
Proteins - metabolism
Proteins - secretion
Receptors, Cell Surface - metabolism
Retention
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - physiology
Solubility
Stem Cells
Vesicular Transport Proteins
Yeasts
title Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorting%20signals%20can%20direct%20receptor-mediated%20export%20of%20soluble%20proteins%20into%20COPII%20vesicles&rft.jtitle=Nature%20cell%20biology&rft.au=Barlowe,%20Charles&rft.date=2004-12-01&rft.volume=6&rft.issue=12&rft.spage=1189&rft.epage=1194&rft.pages=1189-1194&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1195&rft_dat=%3Cgale_proqu%3EA183288150%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222285568&rft_id=info:pmid/15516922&rft_galeid=A183288150&rfr_iscdi=true