Progesterone inhibits insulin-like growth factor binding protein-1 (IGFBP-1) production by explants of the Fallopian tube
The Fallopian tube provides the environment for early embryo growth, a process which is influenced by insulin-like growth factors (IGFs) in the tubal fluid. Whether the bioavailability of tubal IGFs is modulated by locally produced IGF-binding protein (IGFBP-1) is not clear. An explant culture syste...
Gespeichert in:
Veröffentlicht in: | Molecular human reproduction 2004-12, Vol.10 (12), p.935-939 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Fallopian tube provides the environment for early embryo growth, a process which is influenced by insulin-like growth factors (IGFs) in the tubal fluid. Whether the bioavailability of tubal IGFs is modulated by locally produced IGF-binding protein (IGFBP-1) is not clear. An explant culture system from human Fallopian tube mucosa was, therefore, developed enabling the potential for IGFBP-1 production by this tissue to be examined directly. Initial characterization of the system established that the explants maintained responsiveness to steroids. Thus, oviduct-specific glycoprotein production, a major product of the oviduct in vivo, continued to be made via an estrogen-sensitive pathway in the culture. The presence of mRNA for IGFBP-1 was established within the explants by the use of quantitative RT–PCR and IGFBP-1 protein was measured by enzyme-linked immunosorbent assay. Although insulin and estradiol had no consistent effect on IGFBP-1, addition of progesterone had a significant inhibitory effect on IGFBP-1 production, both at the mRNA and protein levels. A dose-range of progesterone revealed an incremental inhibitory effect of progesterone on IGFBP-1 output (maximal effect, 25–50 nmol/l), consistent with physiological inhibition of this process during the luteal phase. We suggest that progesterone might, therefore, play a role in controlling the bioavailability of IGFs to the embryo during early development within the Fallopian tube. |
---|---|
ISSN: | 1360-9947 1460-2407 |
DOI: | 10.1093/molehr/gah124 |