Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics

Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-04, Vol.113 (16), p.4015-4021
Hauptverfasser: Martinson, Alex B. F, Góes, Márcio S, Fabregat-Santiago, Francisco, Bisquert, Juan, Pellin, Michael J, Hupp, Joseph T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4021
container_issue 16
container_start_page 4015
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 113
creator Martinson, Alex B. F
Góes, Márcio S
Fabregat-Santiago, Francisco
Bisquert, Juan
Pellin, Michael J
Hupp, Joseph T
description Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO2 nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm2 s−1 are obtained, making these pseudo-1D photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.
doi_str_mv 10.1021/jp810406q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67136065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67136065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-7521cf238d806d8bcb58112e9ae6182282a6960e6fef47ce4b19ffde127c521f3</originalsourceid><addsrcrecordid>eNptkU1P3DAQhq0KVD7aQ_8A8gUkDqEeZ-Mk3CCkgISK1N1eeokcZwxeZe1gJ6jbf9J_W692BZee5kPP-45mhpAvwC6Acfi6HApgMyZePpBDyDhLMg7ZXsxZUSaZSMsDchTCkjEGKZ99JAdQpjkAsEPyt-5Rjd5ZuvDShsH5kRpLb9aYzNEGM5o_2NG566WnFfZ9oNcyxE4U_LKP9Lu0bpxaDJe0fjUdWoVUO0_vzNNzv6a11kYZtCOtnqV_Qlq5fjPPRLm0Ha1_Kxw2lewj_UMOpoujrVwZFT6RfS37gJ938Zj8_FYvqrvk4fH2vrp6SGSal2OSx12V5mnRFUx0RavarADgWEoUUHBecClKwVBo1LNc4ayFUusOgecqSnV6TM62voN3LxOGsVmZoOKq0qKbQiNySAUTWQTPt6DyLgSPuhm8WUm_boA1mz80b3-I7MnOdGpX2L2Tu8NH4HQLSBWapZt8PEH4j9E_VVmQtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67136065</pqid></control><display><type>article</type><title>Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics</title><source>American Chemical Society Journals</source><creator>Martinson, Alex B. F ; Góes, Márcio S ; Fabregat-Santiago, Francisco ; Bisquert, Juan ; Pellin, Michael J ; Hupp, Joseph T</creator><creatorcontrib>Martinson, Alex B. F ; Góes, Márcio S ; Fabregat-Santiago, Francisco ; Bisquert, Juan ; Pellin, Michael J ; Hupp, Joseph T</creatorcontrib><description>Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO2 nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm2 s−1 are obtained, making these pseudo-1D photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp810406q</identifier><identifier>PMID: 19371110</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2009-04, Vol.113 (16), p.4015-4021</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-7521cf238d806d8bcb58112e9ae6182282a6960e6fef47ce4b19ffde127c521f3</citedby><cites>FETCH-LOGICAL-a379t-7521cf238d806d8bcb58112e9ae6182282a6960e6fef47ce4b19ffde127c521f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp810406q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp810406q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19371110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinson, Alex B. F</creatorcontrib><creatorcontrib>Góes, Márcio S</creatorcontrib><creatorcontrib>Fabregat-Santiago, Francisco</creatorcontrib><creatorcontrib>Bisquert, Juan</creatorcontrib><creatorcontrib>Pellin, Michael J</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><title>Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO2 nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm2 s−1 are obtained, making these pseudo-1D photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkU1P3DAQhq0KVD7aQ_8A8gUkDqEeZ-Mk3CCkgISK1N1eeokcZwxeZe1gJ6jbf9J_W692BZee5kPP-45mhpAvwC6Acfi6HApgMyZePpBDyDhLMg7ZXsxZUSaZSMsDchTCkjEGKZ99JAdQpjkAsEPyt-5Rjd5ZuvDShsH5kRpLb9aYzNEGM5o_2NG566WnFfZ9oNcyxE4U_LKP9Lu0bpxaDJe0fjUdWoVUO0_vzNNzv6a11kYZtCOtnqV_Qlq5fjPPRLm0Ha1_Kxw2lewj_UMOpoujrVwZFT6RfS37gJ938Zj8_FYvqrvk4fH2vrp6SGSal2OSx12V5mnRFUx0RavarADgWEoUUHBecClKwVBo1LNc4ayFUusOgecqSnV6TM62voN3LxOGsVmZoOKq0qKbQiNySAUTWQTPt6DyLgSPuhm8WUm_boA1mz80b3-I7MnOdGpX2L2Tu8NH4HQLSBWapZt8PEH4j9E_VVmQtw</recordid><startdate>20090423</startdate><enddate>20090423</enddate><creator>Martinson, Alex B. F</creator><creator>Góes, Márcio S</creator><creator>Fabregat-Santiago, Francisco</creator><creator>Bisquert, Juan</creator><creator>Pellin, Michael J</creator><creator>Hupp, Joseph T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090423</creationdate><title>Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics</title><author>Martinson, Alex B. F ; Góes, Márcio S ; Fabregat-Santiago, Francisco ; Bisquert, Juan ; Pellin, Michael J ; Hupp, Joseph T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-7521cf238d806d8bcb58112e9ae6182282a6960e6fef47ce4b19ffde127c521f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinson, Alex B. F</creatorcontrib><creatorcontrib>Góes, Márcio S</creatorcontrib><creatorcontrib>Fabregat-Santiago, Francisco</creatorcontrib><creatorcontrib>Bisquert, Juan</creatorcontrib><creatorcontrib>Pellin, Michael J</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinson, Alex B. F</au><au>Góes, Márcio S</au><au>Fabregat-Santiago, Francisco</au><au>Bisquert, Juan</au><au>Pellin, Michael J</au><au>Hupp, Joseph T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2009-04-23</date><risdate>2009</risdate><volume>113</volume><issue>16</issue><spage>4015</spage><epage>4021</epage><pages>4015-4021</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO2 nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm2 s−1 are obtained, making these pseudo-1D photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19371110</pmid><doi>10.1021/jp810406q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2009-04, Vol.113 (16), p.4015-4021
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_67136065
source American Chemical Society Journals
title Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transport%20in%20Dye-Sensitized%20Solar%20Cells%20Based%20on%20ZnO%20Nanotubes:%20Evidence%20for%20Highly%20Efficient%20Charge%20Collection%20and%20Exceptionally%20Rapid%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Martinson,%20Alex%20B.%20F&rft.date=2009-04-23&rft.volume=113&rft.issue=16&rft.spage=4015&rft.epage=4021&rft.pages=4015-4021&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp810406q&rft_dat=%3Cproquest_cross%3E67136065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67136065&rft_id=info:pmid/19371110&rfr_iscdi=true