A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures
A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The tem...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2009-02, Vol.113 (8), p.2398-2403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2403 |
---|---|
container_issue | 8 |
container_start_page | 2398 |
container_title | The journal of physical chemistry. B |
container_volume | 113 |
creator | Djamali, Essmaiil Cobble, James W |
description | A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory. |
doi_str_mv | 10.1021/jp8055398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67119450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67119450</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMorq4e_APSi4KHaj42aXJclvUDFvSwnks2nbJd2qYmKdh_b8oWvUgImZk88zLzInRD8CPBlDwdOok5Z0qeoAvCKU7jzU6nWBAsZujS-wPGlFMpztGMqHg4FheoXSafbVVWUCTbPVg3JLZMwh7GzDW2GFrdVCb5cLYDFyrw4__yqwfb-2RdgwnO1kOI9WCT9Xdw0MReaCKtQ-9iXbdFbAfvx-wKnZW69nA9vXO0fV5vV6_p5v3lbbXcpJoRFlJm6EJpWRophabAaGZY3JBTAlhjZjK2E4WSquS4oAy4kdrsSmU0Fgq0YnN0f5TtnI2z-pA3lTdQ17odB89FRohacBzBhyNonPXeQZl3rmq0G3KC89Hb_NfbyN5Oov2ugeKPnMyMwN0R0MbnB9u7Nq74j9APSpiBQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67119450</pqid></control><display><type>article</type><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><source>ACS Publications</source><creator>Djamali, Essmaiil ; Cobble, James W</creator><creatorcontrib>Djamali, Essmaiil ; Cobble, James W</creatorcontrib><description>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp8055398</identifier><identifier>PMID: 19191506</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><ispartof>The journal of physical chemistry. B, 2009-02, Vol.113 (8), p.2398-2403</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</citedby><cites>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp8055398$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp8055398$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19191506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Djamali, Essmaiil</creatorcontrib><creatorcontrib>Cobble, James W</creatorcontrib><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</description><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMorq4e_APSi4KHaj42aXJclvUDFvSwnks2nbJd2qYmKdh_b8oWvUgImZk88zLzInRD8CPBlDwdOok5Z0qeoAvCKU7jzU6nWBAsZujS-wPGlFMpztGMqHg4FheoXSafbVVWUCTbPVg3JLZMwh7GzDW2GFrdVCb5cLYDFyrw4__yqwfb-2RdgwnO1kOI9WCT9Xdw0MReaCKtQ-9iXbdFbAfvx-wKnZW69nA9vXO0fV5vV6_p5v3lbbXcpJoRFlJm6EJpWRophabAaGZY3JBTAlhjZjK2E4WSquS4oAy4kdrsSmU0Fgq0YnN0f5TtnI2z-pA3lTdQ17odB89FRohacBzBhyNonPXeQZl3rmq0G3KC89Hb_NfbyN5Oov2ugeKPnMyMwN0R0MbnB9u7Nq74j9APSpiBQA</recordid><startdate>20090226</startdate><enddate>20090226</enddate><creator>Djamali, Essmaiil</creator><creator>Cobble, James W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090226</creationdate><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><author>Djamali, Essmaiil ; Cobble, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B: Statistical Mechanics, Thermodynamics, Medium Effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djamali, Essmaiil</creatorcontrib><creatorcontrib>Cobble, James W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djamali, Essmaiil</au><au>Cobble, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-02-26</date><risdate>2009</risdate><volume>113</volume><issue>8</issue><spage>2398</spage><epage>2403</epage><pages>2398-2403</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19191506</pmid><doi>10.1021/jp8055398</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2009-02, Vol.113 (8), p.2398-2403 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_67119450 |
source | ACS Publications |
subjects | B: Statistical Mechanics, Thermodynamics, Medium Effects |
title | A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Theory%20of%20the%20Thermodynamic%20Properties%20of%20Aqueous%20Electrolytes%20to%20Extreme%20Temperatures%20and%20Pressures&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Djamali,%20Essmaiil&rft.date=2009-02-26&rft.volume=113&rft.issue=8&rft.spage=2398&rft.epage=2403&rft.pages=2398-2403&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp8055398&rft_dat=%3Cproquest_cross%3E67119450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67119450&rft_id=info:pmid/19191506&rfr_iscdi=true |