A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures

A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2009-02, Vol.113 (8), p.2398-2403
Hauptverfasser: Djamali, Essmaiil, Cobble, James W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2403
container_issue 8
container_start_page 2398
container_title The journal of physical chemistry. B
container_volume 113
creator Djamali, Essmaiil
Cobble, James W
description A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.
doi_str_mv 10.1021/jp8055398
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67119450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67119450</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMorq4e_APSi4KHaj42aXJclvUDFvSwnks2nbJd2qYmKdh_b8oWvUgImZk88zLzInRD8CPBlDwdOok5Z0qeoAvCKU7jzU6nWBAsZujS-wPGlFMpztGMqHg4FheoXSafbVVWUCTbPVg3JLZMwh7GzDW2GFrdVCb5cLYDFyrw4__yqwfb-2RdgwnO1kOI9WCT9Xdw0MReaCKtQ-9iXbdFbAfvx-wKnZW69nA9vXO0fV5vV6_p5v3lbbXcpJoRFlJm6EJpWRophabAaGZY3JBTAlhjZjK2E4WSquS4oAy4kdrsSmU0Fgq0YnN0f5TtnI2z-pA3lTdQ17odB89FRohacBzBhyNonPXeQZl3rmq0G3KC89Hb_NfbyN5Oov2ugeKPnMyMwN0R0MbnB9u7Nq74j9APSpiBQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67119450</pqid></control><display><type>article</type><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><source>ACS Publications</source><creator>Djamali, Essmaiil ; Cobble, James W</creator><creatorcontrib>Djamali, Essmaiil ; Cobble, James W</creatorcontrib><description>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp8055398</identifier><identifier>PMID: 19191506</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><ispartof>The journal of physical chemistry. B, 2009-02, Vol.113 (8), p.2398-2403</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</citedby><cites>FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp8055398$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp8055398$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19191506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Djamali, Essmaiil</creatorcontrib><creatorcontrib>Cobble, James W</creatorcontrib><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</description><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMorq4e_APSi4KHaj42aXJclvUDFvSwnks2nbJd2qYmKdh_b8oWvUgImZk88zLzInRD8CPBlDwdOok5Z0qeoAvCKU7jzU6nWBAsZujS-wPGlFMpztGMqHg4FheoXSafbVVWUCTbPVg3JLZMwh7GzDW2GFrdVCb5cLYDFyrw4__yqwfb-2RdgwnO1kOI9WCT9Xdw0MReaCKtQ-9iXbdFbAfvx-wKnZW69nA9vXO0fV5vV6_p5v3lbbXcpJoRFlJm6EJpWRophabAaGZY3JBTAlhjZjK2E4WSquS4oAy4kdrsSmU0Fgq0YnN0f5TtnI2z-pA3lTdQ17odB89FRohacBzBhyNonPXeQZl3rmq0G3KC89Hb_NfbyN5Oov2ugeKPnMyMwN0R0MbnB9u7Nq74j9APSpiBQA</recordid><startdate>20090226</startdate><enddate>20090226</enddate><creator>Djamali, Essmaiil</creator><creator>Cobble, James W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090226</creationdate><title>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</title><author>Djamali, Essmaiil ; Cobble, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-3c249a8fc886a2e327c3055521e0a03c73b6d989f50d23e5c8acbf9ca069ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B: Statistical Mechanics, Thermodynamics, Medium Effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djamali, Essmaiil</creatorcontrib><creatorcontrib>Cobble, James W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djamali, Essmaiil</au><au>Cobble, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-02-26</date><risdate>2009</risdate><volume>113</volume><issue>8</issue><spage>2398</spage><epage>2403</epage><pages>2398-2403</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A new theoretical treatment has been developed for predicting the thermodynamic properties of electrolytes up to and beyond the critical temperature of water (973 K and at pressures up to 1000 MPa). The model is based upon the classical Born equation corrected for non-Born hydration effects. The temperature and pressure behavior of electrolytes can now be accurately predicted from existing low temperature data. Only two constants are needed for each electrolyte at all temperatures and pressures, where data exist to test the theory.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19191506</pmid><doi>10.1021/jp8055398</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2009-02, Vol.113 (8), p.2398-2403
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_67119450
source ACS Publications
subjects B: Statistical Mechanics, Thermodynamics, Medium Effects
title A Unified Theory of the Thermodynamic Properties of Aqueous Electrolytes to Extreme Temperatures and Pressures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Theory%20of%20the%20Thermodynamic%20Properties%20of%20Aqueous%20Electrolytes%20to%20Extreme%20Temperatures%20and%20Pressures&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Djamali,%20Essmaiil&rft.date=2009-02-26&rft.volume=113&rft.issue=8&rft.spage=2398&rft.epage=2403&rft.pages=2398-2403&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp8055398&rft_dat=%3Cproquest_cross%3E67119450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67119450&rft_id=info:pmid/19191506&rfr_iscdi=true