Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel

This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2009-04, Vol.20 (4), p.665-674
Hauptverfasser: Zhao, Haiquan, Zhang, Jiashu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 4
container_start_page 665
container_title IEEE transaction on neural networks and learning systems
container_volume 20
creator Zhao, Haiquan
Zhang, Jiashu
description This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.
doi_str_mv 10.1109/TNN.2008.2011481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67118088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787092</ieee_id><sourcerecordid>2543494571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1dce41325072661000b12221babe41b6a58a0791ed79ca52db3d96da7231013e3</originalsourceid><addsrcrecordid>eNp9kcFrFDEUh4MotlbvgiCDoJ6mvpdkJpPjsrRaWLYg9RwymQymnUm2yYyl_evNdocKHnrJy0u-9x3ej5D3CKeIIL9dbbenFKDJByJv8AU5RsmxBJDsZb4Dr0pJqTgib1K6BkBeQf2aHKGknAPKY5JWnd5N7o8d7ot1GFvnbVecX_wstM919mZyweuh2Dh_U6zi5HpnXO63do6PZboL8aY4u5314B5sLPoQi23wQxbpuFeOs3dG7zXF-rf23g5vyateD8m-W-oJ-XV-drX-UW4uv1-sV5vScEGnEjtjOTJagaB1jQDQIqUUW93m97bWVaNBSLSdkEZXtGtZJ-tOC8oQkFl2Qr4evLsYbmebJjW6ZOwwaG_DnFQjqrwgykUmvzxL1gKxgabJ4Kf_wOswx7ygpCRSYFJIniE4QCaGlKLt1S66Ucd7haD2uamcm9rnppbc8sjHxTu3o-3-DSxBZeDzAuhk9NBH7Y1LTxxFwRk-ij4cOGetffrmohEgKfsLJHWnrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912039794</pqid></control><display><type>article</type><title>Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Haiquan ; Zhang, Jiashu</creator><creatorcontrib>Zhao, Haiquan ; Zhang, Jiashu</creatorcontrib><description>This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2008.2011481</identifier><identifier>PMID: 19244019</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive equalizer ; Adaptive filters ; Algorithms ; Applied sciences ; Artificial intelligence ; Artificial neural networks ; Bit error rate ; Channels ; Communication channels ; Computational efficiency ; Computer science; control theory; systems ; Computer simulation ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Detection, estimation, filtering, equalization, prediction ; Equalizers ; Exact sciences and technology ; finite impulse response (FIR) filter ; Finite impulse response filter ; functional link artificial neural network (FLANN) ; Impulse response ; Information, signal and communications theory ; Links ; Neural networks ; nonlinear channel ; Nonlinear distortion ; Nonlinear filters ; Nonlinearity ; Signal and communications theory ; Signal, noise ; Software ; Steady-state ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transaction on neural networks and learning systems, 2009-04, Vol.20 (4), p.665-674</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1dce41325072661000b12221babe41b6a58a0791ed79ca52db3d96da7231013e3</citedby><cites>FETCH-LOGICAL-c472t-1dce41325072661000b12221babe41b6a58a0791ed79ca52db3d96da7231013e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4787092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21743181$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19244019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Zhang, Jiashu</creatorcontrib><title>Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.</description><subject>Adaptive equalizer</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bit error rate</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Equalizers</subject><subject>Exact sciences and technology</subject><subject>finite impulse response (FIR) filter</subject><subject>Finite impulse response filter</subject><subject>functional link artificial neural network (FLANN)</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Links</subject><subject>Neural networks</subject><subject>nonlinear channel</subject><subject>Nonlinear distortion</subject><subject>Nonlinear filters</subject><subject>Nonlinearity</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Software</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcFrFDEUh4MotlbvgiCDoJ6mvpdkJpPjsrRaWLYg9RwymQymnUm2yYyl_evNdocKHnrJy0u-9x3ej5D3CKeIIL9dbbenFKDJByJv8AU5RsmxBJDsZb4Dr0pJqTgib1K6BkBeQf2aHKGknAPKY5JWnd5N7o8d7ot1GFvnbVecX_wstM919mZyweuh2Dh_U6zi5HpnXO63do6PZboL8aY4u5314B5sLPoQi23wQxbpuFeOs3dG7zXF-rf23g5vyateD8m-W-oJ-XV-drX-UW4uv1-sV5vScEGnEjtjOTJagaB1jQDQIqUUW93m97bWVaNBSLSdkEZXtGtZJ-tOC8oQkFl2Qr4evLsYbmebJjW6ZOwwaG_DnFQjqrwgykUmvzxL1gKxgabJ4Kf_wOswx7ygpCRSYFJIniE4QCaGlKLt1S66Ucd7haD2uamcm9rnppbc8sjHxTu3o-3-DSxBZeDzAuhk9NBH7Y1LTxxFwRk-ij4cOGetffrmohEgKfsLJHWnrg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Zhao, Haiquan</creator><creator>Zhang, Jiashu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel</title><author>Zhao, Haiquan ; Zhang, Jiashu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1dce41325072661000b12221babe41b6a58a0791ed79ca52db3d96da7231013e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive equalizer</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bit error rate</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Equalizers</topic><topic>Exact sciences and technology</topic><topic>finite impulse response (FIR) filter</topic><topic>Finite impulse response filter</topic><topic>functional link artificial neural network (FLANN)</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Links</topic><topic>Neural networks</topic><topic>nonlinear channel</topic><topic>Nonlinear distortion</topic><topic>Nonlinear filters</topic><topic>Nonlinearity</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Software</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Zhang, Jiashu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Haiquan</au><au>Zhang, Jiashu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>20</volume><issue>4</issue><spage>665</spage><epage>674</epage><pages>665-674</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19244019</pmid><doi>10.1109/TNN.2008.2011481</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2009-04, Vol.20 (4), p.665-674
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_67118088
source IEEE Electronic Library (IEL)
subjects Adaptive equalizer
Adaptive filters
Algorithms
Applied sciences
Artificial intelligence
Artificial neural networks
Bit error rate
Channels
Communication channels
Computational efficiency
Computer science
control theory
systems
Computer simulation
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Detection, estimation, filtering, equalization, prediction
Equalizers
Exact sciences and technology
finite impulse response (FIR) filter
Finite impulse response filter
functional link artificial neural network (FLANN)
Impulse response
Information, signal and communications theory
Links
Neural networks
nonlinear channel
Nonlinear distortion
Nonlinear filters
Nonlinearity
Signal and communications theory
Signal, noise
Software
Steady-state
Studies
Telecommunications and information theory
title Adaptively Combined FIR and Functional Link Artificial Neural Network Equalizer for Nonlinear Communication Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20Combined%20FIR%20and%20Functional%20Link%20Artificial%20Neural%20Network%20Equalizer%20for%20Nonlinear%20Communication%20Channel&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhao,%20Haiquan&rft.date=2009-04-01&rft.volume=20&rft.issue=4&rft.spage=665&rft.epage=674&rft.pages=665-674&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2008.2011481&rft_dat=%3Cproquest_RIE%3E2543494571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912039794&rft_id=info:pmid/19244019&rft_ieee_id=4787092&rfr_iscdi=true