Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2

Methylation at particular residues on histone tails has been associated with various functions and, in the case of dimethylated histone H3 arginine 2 (H3R2), cross-talk with methylation of a nearby lysine has been shown to be linked to transcriptional repression. Budding yeast monomethylated H3R2 is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2009-04, Vol.16 (4), p.449-451
Hauptverfasser: Kirmizis, Antonis, Santos-Rosa, Helena, Penkett, Christopher J, Singer, Michael A, Green, Roland D, Kouzarides, Tony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 4
container_start_page 449
container_title Nature structural & molecular biology
container_volume 16
creator Kirmizis, Antonis
Santos-Rosa, Helena
Penkett, Christopher J
Singer, Michael A
Green, Roland D
Kouzarides, Tony
description Methylation at particular residues on histone tails has been associated with various functions and, in the case of dimethylated histone H3 arginine 2 (H3R2), cross-talk with methylation of a nearby lysine has been shown to be linked to transcriptional repression. Budding yeast monomethylated H3R2 is now shown to be associated with active loci and involved in activation of meiotic genes upon induction of sporulation. Dimethylation of histone H3 Arg2 (H3R2me2) maintains transcriptional silencing by inhibiting Set1 mediated trimethylation of H3K4. Here we demonstrate that Arg2 is also monomethylated (H3R2me1) in yeast but that its functional characteristics are distinct from H3R2me2: (i) H3R2me1 does not inhibit histone H3 Lys4 (H3K4) methylation; (ii) it is present throughout the coding region of genes; and (iii) it correlates with active transcription. Collectively, these results indicate that different H3R2 methylation states have defined roles in gene expression.
doi_str_mv 10.1038/nsmb.1569
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67116010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A197990753</galeid><sourcerecordid>A197990753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b0cae10a700d11b40ebc9c1087fbe153245cc43b0579128a146a3bffb714e9733</originalsourceid><addsrcrecordid>eNqFkltrFTEUhYNYbK0--AckKAgKc8xOJpPJY6mXFgqCl0cJmUzmnJSZ5Jhk0P57Mz0HSy8gecgm-9uL7MVC6AWQFRDWvvdp6lbAG_kIHQGveSVlyx__qyU7RE9TuiSEci7YE3QIkgoiCD1CPz-4lJ03GeeofTLRbbMLXo84zHk754R1SsE4nW2Pf7u8wVPwocLa97h3k82bq_G6tyk6wVt8xrCOa-ddqekzdDDoMdnn-_sY_fj08fvpWXXx5fP56clFZTjQXHXEaAtEC0J6gK4mtjPSAGnF0FngjNbcmJp1hAsJtNVQN5p1w9AJqK0UjB2jNzvdbQy_Zpuymlwydhy1t2FOqhEADSle_Q-khFNWU1nAV3fAyzDH4kthaMsawlhdoNc7aK1Hq5wfQjHRLIrqBKSQkgi-fG71AFVObydnimeDK--3Bt7eGihMtn_yWs8pqfNvXx9kTQwpRTuobXSTjlcKiFrCoZZwqCUchX2532nuJtvfkPs0FODdDkil5dc23ix9X-0v2CPAwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228360334</pqid></control><display><type>article</type><title>Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Kirmizis, Antonis ; Santos-Rosa, Helena ; Penkett, Christopher J ; Singer, Michael A ; Green, Roland D ; Kouzarides, Tony</creator><creatorcontrib>Kirmizis, Antonis ; Santos-Rosa, Helena ; Penkett, Christopher J ; Singer, Michael A ; Green, Roland D ; Kouzarides, Tony</creatorcontrib><description>Methylation at particular residues on histone tails has been associated with various functions and, in the case of dimethylated histone H3 arginine 2 (H3R2), cross-talk with methylation of a nearby lysine has been shown to be linked to transcriptional repression. Budding yeast monomethylated H3R2 is now shown to be associated with active loci and involved in activation of meiotic genes upon induction of sporulation. Dimethylation of histone H3 Arg2 (H3R2me2) maintains transcriptional silencing by inhibiting Set1 mediated trimethylation of H3K4. Here we demonstrate that Arg2 is also monomethylated (H3R2me1) in yeast but that its functional characteristics are distinct from H3R2me2: (i) H3R2me1 does not inhibit histone H3 Lys4 (H3K4) methylation; (ii) it is present throughout the coding region of genes; and (iii) it correlates with active transcription. Collectively, these results indicate that different H3R2 methylation states have defined roles in gene expression.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.1569</identifier><identifier>PMID: 19270702</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Arginine ; Arginine - metabolism ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; brief-communication ; Gene expression ; Gene Expression Regulation, Fungal ; Genetic aspects ; Histones - metabolism ; Life Sciences ; Membrane Biology ; Methylation ; Molecular biology ; Physiological aspects ; Post-translational modification ; Protein Structure ; Saccharomyces cerevisiae - physiology ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2009-04, Vol.16 (4), p.449-451</ispartof><rights>Springer Nature America, Inc. 2009</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b0cae10a700d11b40ebc9c1087fbe153245cc43b0579128a146a3bffb714e9733</citedby><cites>FETCH-LOGICAL-c512t-b0cae10a700d11b40ebc9c1087fbe153245cc43b0579128a146a3bffb714e9733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.1569$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.1569$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19270702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirmizis, Antonis</creatorcontrib><creatorcontrib>Santos-Rosa, Helena</creatorcontrib><creatorcontrib>Penkett, Christopher J</creatorcontrib><creatorcontrib>Singer, Michael A</creatorcontrib><creatorcontrib>Green, Roland D</creatorcontrib><creatorcontrib>Kouzarides, Tony</creatorcontrib><title>Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Methylation at particular residues on histone tails has been associated with various functions and, in the case of dimethylated histone H3 arginine 2 (H3R2), cross-talk with methylation of a nearby lysine has been shown to be linked to transcriptional repression. Budding yeast monomethylated H3R2 is now shown to be associated with active loci and involved in activation of meiotic genes upon induction of sporulation. Dimethylation of histone H3 Arg2 (H3R2me2) maintains transcriptional silencing by inhibiting Set1 mediated trimethylation of H3K4. Here we demonstrate that Arg2 is also monomethylated (H3R2me1) in yeast but that its functional characteristics are distinct from H3R2me2: (i) H3R2me1 does not inhibit histone H3 Lys4 (H3K4) methylation; (ii) it is present throughout the coding region of genes; and (iii) it correlates with active transcription. Collectively, these results indicate that different H3R2 methylation states have defined roles in gene expression.</description><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>brief-communication</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic aspects</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Methylation</subject><subject>Molecular biology</subject><subject>Physiological aspects</subject><subject>Post-translational modification</subject><subject>Protein Structure</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkltrFTEUhYNYbK0--AckKAgKc8xOJpPJY6mXFgqCl0cJmUzmnJSZ5Jhk0P57Mz0HSy8gecgm-9uL7MVC6AWQFRDWvvdp6lbAG_kIHQGveSVlyx__qyU7RE9TuiSEci7YE3QIkgoiCD1CPz-4lJ03GeeofTLRbbMLXo84zHk754R1SsE4nW2Pf7u8wVPwocLa97h3k82bq_G6tyk6wVt8xrCOa-ddqekzdDDoMdnn-_sY_fj08fvpWXXx5fP56clFZTjQXHXEaAtEC0J6gK4mtjPSAGnF0FngjNbcmJp1hAsJtNVQN5p1w9AJqK0UjB2jNzvdbQy_Zpuymlwydhy1t2FOqhEADSle_Q-khFNWU1nAV3fAyzDH4kthaMsawlhdoNc7aK1Hq5wfQjHRLIrqBKSQkgi-fG71AFVObydnimeDK--3Bt7eGihMtn_yWs8pqfNvXx9kTQwpRTuobXSTjlcKiFrCoZZwqCUchX2532nuJtvfkPs0FODdDkil5dc23ix9X-0v2CPAwg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kirmizis, Antonis</creator><creator>Santos-Rosa, Helena</creator><creator>Penkett, Christopher J</creator><creator>Singer, Michael A</creator><creator>Green, Roland D</creator><creator>Kouzarides, Tony</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2</title><author>Kirmizis, Antonis ; Santos-Rosa, Helena ; Penkett, Christopher J ; Singer, Michael A ; Green, Roland D ; Kouzarides, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b0cae10a700d11b40ebc9c1087fbe153245cc43b0579128a146a3bffb714e9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>brief-communication</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic aspects</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Methylation</topic><topic>Molecular biology</topic><topic>Physiological aspects</topic><topic>Post-translational modification</topic><topic>Protein Structure</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirmizis, Antonis</creatorcontrib><creatorcontrib>Santos-Rosa, Helena</creatorcontrib><creatorcontrib>Penkett, Christopher J</creatorcontrib><creatorcontrib>Singer, Michael A</creatorcontrib><creatorcontrib>Green, Roland D</creatorcontrib><creatorcontrib>Kouzarides, Tony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirmizis, Antonis</au><au>Santos-Rosa, Helena</au><au>Penkett, Christopher J</au><au>Singer, Michael A</au><au>Green, Roland D</au><au>Kouzarides, Tony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>449</spage><epage>451</epage><pages>449-451</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Methylation at particular residues on histone tails has been associated with various functions and, in the case of dimethylated histone H3 arginine 2 (H3R2), cross-talk with methylation of a nearby lysine has been shown to be linked to transcriptional repression. Budding yeast monomethylated H3R2 is now shown to be associated with active loci and involved in activation of meiotic genes upon induction of sporulation. Dimethylation of histone H3 Arg2 (H3R2me2) maintains transcriptional silencing by inhibiting Set1 mediated trimethylation of H3K4. Here we demonstrate that Arg2 is also monomethylated (H3R2me1) in yeast but that its functional characteristics are distinct from H3R2me2: (i) H3R2me1 does not inhibit histone H3 Lys4 (H3K4) methylation; (ii) it is present throughout the coding region of genes; and (iii) it correlates with active transcription. Collectively, these results indicate that different H3R2 methylation states have defined roles in gene expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19270702</pmid><doi>10.1038/nsmb.1569</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2009-04, Vol.16 (4), p.449-451
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_67116010
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects Arginine
Arginine - metabolism
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
brief-communication
Gene expression
Gene Expression Regulation, Fungal
Genetic aspects
Histones - metabolism
Life Sciences
Membrane Biology
Methylation
Molecular biology
Physiological aspects
Post-translational modification
Protein Structure
Saccharomyces cerevisiae - physiology
Yeast
Yeast fungi
Yeasts
title Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20transcriptional%20outputs%20associated%20with%20mono-%20and%20dimethylated%20histone%20H3%20arginine%202&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Kirmizis,%20Antonis&rft.date=2009-04-01&rft.volume=16&rft.issue=4&rft.spage=449&rft.epage=451&rft.pages=449-451&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.1569&rft_dat=%3Cgale_proqu%3EA197990753%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228360334&rft_id=info:pmid/19270702&rft_galeid=A197990753&rfr_iscdi=true