Observation of cavitation bubbles in monoleaflet mechanical heart valves
Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic...
Gespeichert in:
Veröffentlicht in: | Journal of artificial organs 2004-09, Vol.7 (3), p.121-127 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 3 |
container_start_page | 121 |
container_title | Journal of artificial organs |
container_volume | 7 |
creator | Lee, Hwansung Tsukiya, Tomonori Homma, Akihiko Kamimura, Tadayuki Takewa, Yoshiaki Tatsumi, Eisuke Taenaka, Yoshiyuki Takano, Hisateru Kitamura, Soichiro |
description | Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH. The valve closing motion, pressure drop measurements, and cavitation capture were employed to investigate the mechanisms for cavitation in the MHV. There are no differences in valve closing velocity between the two valves, and its value ranged from 0.53 to 1.96 m/s. The magnitude of negative pressure increased with an increase in the heart rate, and the negative pressure in the Medtronic Hall valve was greater than that in the Björk-Shiley valve. Cavitation bubbles were concentrated at the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From the viewpoint of squeeze flow, the Björk-Shiley valve was less likely to cause blood cell damage than the Medtronic Hall valve in our EHTAH. |
doi_str_mv | 10.1007/s10047-004-0258-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67099592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17298537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f8a95b5f1eee75024613b33f862117ca1c66e3a2537bc36449e72769f44d3af13</originalsourceid><addsrcrecordid>eNqFkU1LA0EMhgdRbK3-AC-yIHhbncznzlGKWqHQi56H2WmGbtmPurNb8N87pQXBi5c3CTxJSF5CboE-AqX6KSYVOk-SUyaLvDgjU1BgcmqoOE-54CLXjJkJuYpxSyloqeklmYCUsuCcTcliVUbs926oujbrQubdvhqOVTmWZY0xq9qs6dquRhdqHLIG_ca1lXd1tkHXD9ne1XuM1-QiuDrizSnOyOfry8d8kS9Xb-_z52XuOVNDHgpnZCkDIKKWlAkFvOQ8FIoBaO_AK4XcMcl16bkSwqBmWpkgxJq7AHxGHo5zd333NWIcbFNFj3XtWuzGaJWmxkjD_gVBM1OkNQm8_wNuu7Fv0xEWALgAzqVKFBwp33cx9hjsrq8a139boPbghj26YZPYgxu2SD13p8lj2eD6t-P0fv4DEkKDwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113413356</pqid></control><display><type>article</type><title>Observation of cavitation bubbles in monoleaflet mechanical heart valves</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lee, Hwansung ; Tsukiya, Tomonori ; Homma, Akihiko ; Kamimura, Tadayuki ; Takewa, Yoshiaki ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki ; Takano, Hisateru ; Kitamura, Soichiro</creator><creatorcontrib>Lee, Hwansung ; Tsukiya, Tomonori ; Homma, Akihiko ; Kamimura, Tadayuki ; Takewa, Yoshiaki ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki ; Takano, Hisateru ; Kitamura, Soichiro</creatorcontrib><description>Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH. The valve closing motion, pressure drop measurements, and cavitation capture were employed to investigate the mechanisms for cavitation in the MHV. There are no differences in valve closing velocity between the two valves, and its value ranged from 0.53 to 1.96 m/s. The magnitude of negative pressure increased with an increase in the heart rate, and the negative pressure in the Medtronic Hall valve was greater than that in the Björk-Shiley valve. Cavitation bubbles were concentrated at the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From the viewpoint of squeeze flow, the Björk-Shiley valve was less likely to cause blood cell damage than the Medtronic Hall valve in our EHTAH.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-004-0258-8</identifier><identifier>PMID: 15558332</identifier><language>eng</language><publisher>Japan: Springer Nature B.V</publisher><subject>Bubbles ; Cavitation ; Equipment Failure Analysis ; Heart Rate ; Heart Valve Prosthesis - adverse effects ; Humans ; Regional Blood Flow ; Studies ; Valves</subject><ispartof>Journal of artificial organs, 2004-09, Vol.7 (3), p.121-127</ispartof><rights>The Japanese Society for Artificial Organs 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f8a95b5f1eee75024613b33f862117ca1c66e3a2537bc36449e72769f44d3af13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15558332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hwansung</creatorcontrib><creatorcontrib>Tsukiya, Tomonori</creatorcontrib><creatorcontrib>Homma, Akihiko</creatorcontrib><creatorcontrib>Kamimura, Tadayuki</creatorcontrib><creatorcontrib>Takewa, Yoshiaki</creatorcontrib><creatorcontrib>Tatsumi, Eisuke</creatorcontrib><creatorcontrib>Taenaka, Yoshiyuki</creatorcontrib><creatorcontrib>Takano, Hisateru</creatorcontrib><creatorcontrib>Kitamura, Soichiro</creatorcontrib><title>Observation of cavitation bubbles in monoleaflet mechanical heart valves</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><description>Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH. The valve closing motion, pressure drop measurements, and cavitation capture were employed to investigate the mechanisms for cavitation in the MHV. There are no differences in valve closing velocity between the two valves, and its value ranged from 0.53 to 1.96 m/s. The magnitude of negative pressure increased with an increase in the heart rate, and the negative pressure in the Medtronic Hall valve was greater than that in the Björk-Shiley valve. Cavitation bubbles were concentrated at the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From the viewpoint of squeeze flow, the Björk-Shiley valve was less likely to cause blood cell damage than the Medtronic Hall valve in our EHTAH.</description><subject>Bubbles</subject><subject>Cavitation</subject><subject>Equipment Failure Analysis</subject><subject>Heart Rate</subject><subject>Heart Valve Prosthesis - adverse effects</subject><subject>Humans</subject><subject>Regional Blood Flow</subject><subject>Studies</subject><subject>Valves</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LA0EMhgdRbK3-AC-yIHhbncznzlGKWqHQi56H2WmGbtmPurNb8N87pQXBi5c3CTxJSF5CboE-AqX6KSYVOk-SUyaLvDgjU1BgcmqoOE-54CLXjJkJuYpxSyloqeklmYCUsuCcTcliVUbs926oujbrQubdvhqOVTmWZY0xq9qs6dquRhdqHLIG_ca1lXd1tkHXD9ne1XuM1-QiuDrizSnOyOfry8d8kS9Xb-_z52XuOVNDHgpnZCkDIKKWlAkFvOQ8FIoBaO_AK4XcMcl16bkSwqBmWpkgxJq7AHxGHo5zd333NWIcbFNFj3XtWuzGaJWmxkjD_gVBM1OkNQm8_wNuu7Fv0xEWALgAzqVKFBwp33cx9hjsrq8a139boPbghj26YZPYgxu2SD13p8lj2eD6t-P0fv4DEkKDwA</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Lee, Hwansung</creator><creator>Tsukiya, Tomonori</creator><creator>Homma, Akihiko</creator><creator>Kamimura, Tadayuki</creator><creator>Takewa, Yoshiaki</creator><creator>Tatsumi, Eisuke</creator><creator>Taenaka, Yoshiyuki</creator><creator>Takano, Hisateru</creator><creator>Kitamura, Soichiro</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Observation of cavitation bubbles in monoleaflet mechanical heart valves</title><author>Lee, Hwansung ; Tsukiya, Tomonori ; Homma, Akihiko ; Kamimura, Tadayuki ; Takewa, Yoshiaki ; Tatsumi, Eisuke ; Taenaka, Yoshiyuki ; Takano, Hisateru ; Kitamura, Soichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f8a95b5f1eee75024613b33f862117ca1c66e3a2537bc36449e72769f44d3af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bubbles</topic><topic>Cavitation</topic><topic>Equipment Failure Analysis</topic><topic>Heart Rate</topic><topic>Heart Valve Prosthesis - adverse effects</topic><topic>Humans</topic><topic>Regional Blood Flow</topic><topic>Studies</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hwansung</creatorcontrib><creatorcontrib>Tsukiya, Tomonori</creatorcontrib><creatorcontrib>Homma, Akihiko</creatorcontrib><creatorcontrib>Kamimura, Tadayuki</creatorcontrib><creatorcontrib>Takewa, Yoshiaki</creatorcontrib><creatorcontrib>Tatsumi, Eisuke</creatorcontrib><creatorcontrib>Taenaka, Yoshiyuki</creatorcontrib><creatorcontrib>Takano, Hisateru</creatorcontrib><creatorcontrib>Kitamura, Soichiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hwansung</au><au>Tsukiya, Tomonori</au><au>Homma, Akihiko</au><au>Kamimura, Tadayuki</au><au>Takewa, Yoshiaki</au><au>Tatsumi, Eisuke</au><au>Taenaka, Yoshiyuki</au><au>Takano, Hisateru</au><au>Kitamura, Soichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of cavitation bubbles in monoleaflet mechanical heart valves</atitle><jtitle>Journal of artificial organs</jtitle><addtitle>J Artif Organs</addtitle><date>2004-09</date><risdate>2004</risdate><volume>7</volume><issue>3</issue><spage>121</spage><epage>127</epage><pages>121-127</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH. The valve closing motion, pressure drop measurements, and cavitation capture were employed to investigate the mechanisms for cavitation in the MHV. There are no differences in valve closing velocity between the two valves, and its value ranged from 0.53 to 1.96 m/s. The magnitude of negative pressure increased with an increase in the heart rate, and the negative pressure in the Medtronic Hall valve was greater than that in the Björk-Shiley valve. Cavitation bubbles were concentrated at the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From the viewpoint of squeeze flow, the Björk-Shiley valve was less likely to cause blood cell damage than the Medtronic Hall valve in our EHTAH.</abstract><cop>Japan</cop><pub>Springer Nature B.V</pub><pmid>15558332</pmid><doi>10.1007/s10047-004-0258-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-7229 |
ispartof | Journal of artificial organs, 2004-09, Vol.7 (3), p.121-127 |
issn | 1434-7229 1619-0904 |
language | eng |
recordid | cdi_proquest_miscellaneous_67099592 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Bubbles Cavitation Equipment Failure Analysis Heart Rate Heart Valve Prosthesis - adverse effects Humans Regional Blood Flow Studies Valves |
title | Observation of cavitation bubbles in monoleaflet mechanical heart valves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20cavitation%20bubbles%20in%20monoleaflet%20mechanical%20heart%20valves&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Lee,%20Hwansung&rft.date=2004-09&rft.volume=7&rft.issue=3&rft.spage=121&rft.epage=127&rft.pages=121-127&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-004-0258-8&rft_dat=%3Cproquest_cross%3E17298537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113413356&rft_id=info:pmid/15558332&rfr_iscdi=true |