Joint Regression Analysis of Correlated Data Using Gaussian Copulas

This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2009-03, Vol.65 (1), p.60-68
Hauptverfasser: Song, Peter X.-K, Li, Mingyao, Yuan, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 60
container_title Biometrics
container_volume 65
creator Song, Peter X.-K
Li, Mingyao
Yuan, Ying
description This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.
doi_str_mv 10.1111/j.1541-0420.2008.01058.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67098674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25502244</jstor_id><sourcerecordid>25502244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6268-8595463024f76e85eed3e2f333747549a85ec4dba94482f1be37293eb8fc10823</originalsourceid><addsrcrecordid>eNqNkV1v0zAYhS3ExMrGTwAiLnaX8Pozzg3S6Fg32JjEVjFxY7mpUzmkcbET0f57HFIViRvwjT_O8x7J5yCUYMhwXG_rDHOGU2AEMgIgM8DAZbZ9giYH4SmaAIBIKcOPx-h5CHW8FhzIM3SMJccgOJ2g6Udn2y75YlbehGBdm5y3utkFGxJXJVPnvWl0Z5bJhe50Mg-2XSUz3UdUt1He9I0Op-io0k0wL_b7CZpffniYXqU3d7Pr6flNWgoiZCp5wZmgQFiVCyO5MUtqSEUpzVnOWaHjU8mWC10wJkmFF4bmpKBmIasSgyT0BJ2NvhvvfvQmdGptQ2maRrfG9UGJHAopcvZPkDJCJKcD-OYvsHa9jwEERTCVlDFRREiOUOldCN5UauPtWvudwqCGOlSthtTVkLoa6lC_61DbOPpq798v1mb5Z3CffwTejcBP25jdfxur99d3t8MxGrwcDerQOX8wIDwWTdjww3TUbejM9qBr_z3GRXOuvn6eqUf4xi7lp3v1EPnXI19pp_TK26Dm9wQwBSwgRovpLxIjt_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213834469</pqid></control><display><type>article</type><title>Joint Regression Analysis of Correlated Data Using Gaussian Copulas</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Song, Peter X.-K ; Li, Mingyao ; Yuan, Ying</creator><creatorcontrib>Song, Peter X.-K ; Li, Mingyao ; Yuan, Ying</creatorcontrib><description>This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2008.01058.x</identifier><identifier>PMID: 18510653</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Biometric Methodology ; Biometrics ; Biometry - methods ; Correlated data ; Correlations ; Covariance matrices ; Data analysis ; Dispersion models ; Estimators ; Gaussian copula ; GEEs ; Inference ; Linear Models ; Maximum likelihood estimation ; Mixed outcomes ; Modeling ; Parametric models ; Regression Analysis ; Simulation ; Statistics as Topic - methods ; Theory</subject><ispartof>Biometrics, 2009-03, Vol.65 (1), p.60-68</ispartof><rights>Copyright 2009 The International Biometric Society</rights><rights>2008, The International Biometric Society</rights><rights>2009 International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6268-8595463024f76e85eed3e2f333747549a85ec4dba94482f1be37293eb8fc10823</citedby><cites>FETCH-LOGICAL-c6268-8595463024f76e85eed3e2f333747549a85ec4dba94482f1be37293eb8fc10823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25502244$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25502244$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18510653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Peter X.-K</creatorcontrib><creatorcontrib>Li, Mingyao</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><title>Joint Regression Analysis of Correlated Data Using Gaussian Copulas</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.</description><subject>Biometric Methodology</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Correlated data</subject><subject>Correlations</subject><subject>Covariance matrices</subject><subject>Data analysis</subject><subject>Dispersion models</subject><subject>Estimators</subject><subject>Gaussian copula</subject><subject>GEEs</subject><subject>Inference</subject><subject>Linear Models</subject><subject>Maximum likelihood estimation</subject><subject>Mixed outcomes</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Regression Analysis</subject><subject>Simulation</subject><subject>Statistics as Topic - methods</subject><subject>Theory</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAYhS3ExMrGTwAiLnaX8Pozzg3S6Fg32JjEVjFxY7mpUzmkcbET0f57HFIViRvwjT_O8x7J5yCUYMhwXG_rDHOGU2AEMgIgM8DAZbZ9giYH4SmaAIBIKcOPx-h5CHW8FhzIM3SMJccgOJ2g6Udn2y75YlbehGBdm5y3utkFGxJXJVPnvWl0Z5bJhe50Mg-2XSUz3UdUt1He9I0Op-io0k0wL_b7CZpffniYXqU3d7Pr6flNWgoiZCp5wZmgQFiVCyO5MUtqSEUpzVnOWaHjU8mWC10wJkmFF4bmpKBmIasSgyT0BJ2NvhvvfvQmdGptQ2maRrfG9UGJHAopcvZPkDJCJKcD-OYvsHa9jwEERTCVlDFRREiOUOldCN5UauPtWvudwqCGOlSthtTVkLoa6lC_61DbOPpq798v1mb5Z3CffwTejcBP25jdfxur99d3t8MxGrwcDerQOX8wIDwWTdjww3TUbejM9qBr_z3GRXOuvn6eqUf4xi7lp3v1EPnXI19pp_TK26Dm9wQwBSwgRovpLxIjt_4</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Song, Peter X.-K</creator><creator>Li, Mingyao</creator><creator>Yuan, Ying</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200903</creationdate><title>Joint Regression Analysis of Correlated Data Using Gaussian Copulas</title><author>Song, Peter X.-K ; Li, Mingyao ; Yuan, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6268-8595463024f76e85eed3e2f333747549a85ec4dba94482f1be37293eb8fc10823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biometric Methodology</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Correlated data</topic><topic>Correlations</topic><topic>Covariance matrices</topic><topic>Data analysis</topic><topic>Dispersion models</topic><topic>Estimators</topic><topic>Gaussian copula</topic><topic>GEEs</topic><topic>Inference</topic><topic>Linear Models</topic><topic>Maximum likelihood estimation</topic><topic>Mixed outcomes</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Regression Analysis</topic><topic>Simulation</topic><topic>Statistics as Topic - methods</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Peter X.-K</creatorcontrib><creatorcontrib>Li, Mingyao</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Peter X.-K</au><au>Li, Mingyao</au><au>Yuan, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Regression Analysis of Correlated Data Using Gaussian Copulas</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2009-03</date><risdate>2009</risdate><volume>65</volume><issue>1</issue><spage>60</spage><epage>68</epage><pages>60-68</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18510653</pmid><doi>10.1111/j.1541-0420.2008.01058.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2009-03, Vol.65 (1), p.60-68
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_67098674
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects Biometric Methodology
Biometrics
Biometry - methods
Correlated data
Correlations
Covariance matrices
Data analysis
Dispersion models
Estimators
Gaussian copula
GEEs
Inference
Linear Models
Maximum likelihood estimation
Mixed outcomes
Modeling
Parametric models
Regression Analysis
Simulation
Statistics as Topic - methods
Theory
title Joint Regression Analysis of Correlated Data Using Gaussian Copulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Regression%20Analysis%20of%20Correlated%20Data%20Using%20Gaussian%20Copulas&rft.jtitle=Biometrics&rft.au=Song,%20Peter%20X.-K&rft.date=2009-03&rft.volume=65&rft.issue=1&rft.spage=60&rft.epage=68&rft.pages=60-68&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2008.01058.x&rft_dat=%3Cjstor_proqu%3E25502244%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213834469&rft_id=info:pmid/18510653&rft_jstor_id=25502244&rfr_iscdi=true