Preparation of highly porous hydroxyapatite from cuttlefish bone

Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200°C. Aragonite (CaCO 3 ) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO 3 2−...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2009-05, Vol.20 (5), p.1039-1046
Hauptverfasser: Ivankovic, H., Gallego Ferrer, G., Tkalcec, E., Orlic, S., Ivankovic, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 5
container_start_page 1039
container_title Journal of materials science. Materials in medicine
container_volume 20
creator Ivankovic, H.
Gallego Ferrer, G.
Tkalcec, E.
Orlic, S.
Ivankovic, M.
description Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200°C. Aragonite (CaCO 3 ) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO 3 2− groups predominantly into the PO 4 3− sites of the Ca 10 (PO 4 ) 6 (OH) 2 structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The intensity of the ν 3 PO 4 3− bands increase, while the intensity of the ν 2 CO 3 2− bands decrease with the duration of HT treatment resulting in the formation of carbonate incorporating hydroxyapatite. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area ( S BET ) and total pore volume increased and mean pore size decreased by HT treatment.
doi_str_mv 10.1007/s10856-008-3674-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67092990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67092990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f91ea7c43069f46e7f29c3d1ace566339fad1807bfcdc020282c25efbd3927ef3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotlZ_gBdZPHhbnSSbZHNTil9Q0IOeQ5pN2i3bzZrsgv33prRQEMRTAvPMO5M8CF1iuMUA4i5iKBnPAcqcclHkcITGmAmaFyUtj9EYJBN5wSiM0FmMKwAoJGOnaIQlpoSBHKP792A7HXRf-zbzLlvWi2WzyTof_BCz5aYK_nuju1TvbeaCX2dm6PvGujous7lv7Tk6cbqJ9mJ_TtDn0-PH9CWfvT2_Th9muSko7nMnsdUi3YFLV3ArHJGGVlgbyzinVDpd4RLE3JnKAAFSEkOYdfOKSiKsoxN0s8vtgv8abOzVuo7GNo1ubVpVcQGSSAn_gpRTJmX6gP9AgtNaVLAEXv8CV34IbXqtIgQTzkrYjsU7yAQfY7BOdaFe67BRGNTWltrZUsmW2tpS256rffAwX9vq0LHXkwCyA2IqtQsbDpP_Tv0BRtWfMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221265800</pqid></control><display><type>article</type><title>Preparation of highly porous hydroxyapatite from cuttlefish bone</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Ivankovic, H. ; Gallego Ferrer, G. ; Tkalcec, E. ; Orlic, S. ; Ivankovic, M.</creator><creatorcontrib>Ivankovic, H. ; Gallego Ferrer, G. ; Tkalcec, E. ; Orlic, S. ; Ivankovic, M.</creatorcontrib><description>Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200°C. Aragonite (CaCO 3 ) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO 3 2− groups predominantly into the PO 4 3− sites of the Ca 10 (PO 4 ) 6 (OH) 2 structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The intensity of the ν 3 PO 4 3− bands increase, while the intensity of the ν 2 CO 3 2− bands decrease with the duration of HT treatment resulting in the formation of carbonate incorporating hydroxyapatite. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area ( S BET ) and total pore volume increased and mean pore size decreased by HT treatment.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3674-0</identifier><identifier>PMID: 19132509</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone and Bones - chemistry ; Bone Substitutes - chemistry ; Bone Substitutes - isolation &amp; purification ; Bones ; Calcium Carbonate - chemistry ; Calcium Carbonate - isolation &amp; purification ; Ceramics ; Chemistry and Materials Science ; Composites ; Decapodiformes - chemistry ; Durapatite - chemistry ; Durapatite - isolation &amp; purification ; Glass ; Hot Temperature ; Materials Science ; Microscopy, Electron, Scanning ; Natural Materials ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Spectroscopy, Fourier Transform Infrared ; Surfaces and Interfaces ; Thin Films ; Tissue engineering ; X-Ray Diffraction</subject><ispartof>Journal of materials science. Materials in medicine, 2009-05, Vol.20 (5), p.1039-1046</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f91ea7c43069f46e7f29c3d1ace566339fad1807bfcdc020282c25efbd3927ef3</citedby><cites>FETCH-LOGICAL-c431t-f91ea7c43069f46e7f29c3d1ace566339fad1807bfcdc020282c25efbd3927ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3674-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3674-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19132509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivankovic, H.</creatorcontrib><creatorcontrib>Gallego Ferrer, G.</creatorcontrib><creatorcontrib>Tkalcec, E.</creatorcontrib><creatorcontrib>Orlic, S.</creatorcontrib><creatorcontrib>Ivankovic, M.</creatorcontrib><title>Preparation of highly porous hydroxyapatite from cuttlefish bone</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200°C. Aragonite (CaCO 3 ) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO 3 2− groups predominantly into the PO 4 3− sites of the Ca 10 (PO 4 ) 6 (OH) 2 structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The intensity of the ν 3 PO 4 3− bands increase, while the intensity of the ν 2 CO 3 2− bands decrease with the duration of HT treatment resulting in the formation of carbonate incorporating hydroxyapatite. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area ( S BET ) and total pore volume increased and mean pore size decreased by HT treatment.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone and Bones - chemistry</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - isolation &amp; purification</subject><subject>Bones</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium Carbonate - isolation &amp; purification</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Decapodiformes - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - isolation &amp; purification</subject><subject>Glass</subject><subject>Hot Temperature</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><subject>X-Ray Diffraction</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEQhoMotlZ_gBdZPHhbnSSbZHNTil9Q0IOeQ5pN2i3bzZrsgv33prRQEMRTAvPMO5M8CF1iuMUA4i5iKBnPAcqcclHkcITGmAmaFyUtj9EYJBN5wSiM0FmMKwAoJGOnaIQlpoSBHKP792A7HXRf-zbzLlvWi2WzyTof_BCz5aYK_nuju1TvbeaCX2dm6PvGujous7lv7Tk6cbqJ9mJ_TtDn0-PH9CWfvT2_Th9muSko7nMnsdUi3YFLV3ArHJGGVlgbyzinVDpd4RLE3JnKAAFSEkOYdfOKSiKsoxN0s8vtgv8abOzVuo7GNo1ubVpVcQGSSAn_gpRTJmX6gP9AgtNaVLAEXv8CV34IbXqtIgQTzkrYjsU7yAQfY7BOdaFe67BRGNTWltrZUsmW2tpS256rffAwX9vq0LHXkwCyA2IqtQsbDpP_Tv0BRtWfMg</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Ivankovic, H.</creator><creator>Gallego Ferrer, G.</creator><creator>Tkalcec, E.</creator><creator>Orlic, S.</creator><creator>Ivankovic, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>Preparation of highly porous hydroxyapatite from cuttlefish bone</title><author>Ivankovic, H. ; Gallego Ferrer, G. ; Tkalcec, E. ; Orlic, S. ; Ivankovic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f91ea7c43069f46e7f29c3d1ace566339fad1807bfcdc020282c25efbd3927ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone and Bones - chemistry</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - isolation &amp; purification</topic><topic>Bones</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium Carbonate - isolation &amp; purification</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Decapodiformes - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - isolation &amp; purification</topic><topic>Glass</topic><topic>Hot Temperature</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivankovic, H.</creatorcontrib><creatorcontrib>Gallego Ferrer, G.</creatorcontrib><creatorcontrib>Tkalcec, E.</creatorcontrib><creatorcontrib>Orlic, S.</creatorcontrib><creatorcontrib>Ivankovic, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivankovic, H.</au><au>Gallego Ferrer, G.</au><au>Tkalcec, E.</au><au>Orlic, S.</au><au>Ivankovic, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of highly porous hydroxyapatite from cuttlefish bone</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>1039</spage><epage>1046</epage><pages>1039-1046</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200°C. Aragonite (CaCO 3 ) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. The substitution of CO 3 2− groups predominantly into the PO 4 3− sites of the Ca 10 (PO 4 ) 6 (OH) 2 structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The intensity of the ν 3 PO 4 3− bands increase, while the intensity of the ν 2 CO 3 2− bands decrease with the duration of HT treatment resulting in the formation of carbonate incorporating hydroxyapatite. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area ( S BET ) and total pore volume increased and mean pore size decreased by HT treatment.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>19132509</pmid><doi>10.1007/s10856-008-3674-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2009-05, Vol.20 (5), p.1039-1046
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_67092990
source MEDLINE; SpringerLink Journals
subjects Animals
Biomaterials
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical materials
Bone and Bones - chemistry
Bone Substitutes - chemistry
Bone Substitutes - isolation & purification
Bones
Calcium Carbonate - chemistry
Calcium Carbonate - isolation & purification
Ceramics
Chemistry and Materials Science
Composites
Decapodiformes - chemistry
Durapatite - chemistry
Durapatite - isolation & purification
Glass
Hot Temperature
Materials Science
Microscopy, Electron, Scanning
Natural Materials
Polymer Sciences
Regenerative Medicine/Tissue Engineering
Spectroscopy, Fourier Transform Infrared
Surfaces and Interfaces
Thin Films
Tissue engineering
X-Ray Diffraction
title Preparation of highly porous hydroxyapatite from cuttlefish bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20highly%20porous%20hydroxyapatite%20from%20cuttlefish%20bone&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Ivankovic,%20H.&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=1039&rft.epage=1046&rft.pages=1039-1046&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3674-0&rft_dat=%3Cproquest_cross%3E67092990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221265800&rft_id=info:pmid/19132509&rfr_iscdi=true