Development of the oxygenator: past, present, and future
From the 1950s to the 1980s, the most widely used oxygenator in the clinical field was the disposable bubble oxygenator. However, membrane oxygenators have become the preferred clinical choice over the years. In the United States, membrane oxygenators used in cardiopulmonary bypass operations accoun...
Gespeichert in:
Veröffentlicht in: | Journal of artificial organs 2004-09, Vol.7 (3), p.111-120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 3 |
container_start_page | 111 |
container_title | Journal of artificial organs |
container_volume | 7 |
creator | Iwahashi, Hidehiko Yuri, Koichi Nosé, Yukihiko |
description | From the 1950s to the 1980s, the most widely used oxygenator in the clinical field was the disposable bubble oxygenator. However, membrane oxygenators have become the preferred clinical choice over the years. In the United States, membrane oxygenators used in cardiopulmonary bypass operations account for the majority of clinical oxygenator use. Membrane oxygenators have an equal capability for oxygenating venous blood compared with other type of oxygenators such as the bubble type and film type; however, the membrane oxygenator requires a smaller volume for priming to achieve a sufficient gas transfer rate and results in less blood trauma such as hemolysis because it uses a similar mechanism to the natural lung. In the 1980s, the first capillary-type oxygenator adopted the system of intracapillary blood perfusion. However, this induced high pressure resistance in the module and caused hemolysis. Thus, at present, capillary oxygenators commonly adopt the system of extracapillary blood perfusion. Microporous hollow-fiber membranes are primarily used for short-term cardiopulmonary bypass application, whereas nonmicroporous hollow-fiber membranes are primarily used for long-term extracorporeal membrane oxgenation application. |
doi_str_mv | 10.1007/s10047-004-0268-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67089747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793401791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-4a08d85164d37d76220d71ab3f77436652dd32b09324880c25418aab354fcc3b3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoVqs_wBdZEHxqNJP7-ib1CgVf9DlkN1lt2ZvJrth_b0oLgi_CcGZgvjkwB6EzIFdAiLqOSbnCSTChUmO5h45AQo5JTvh-mjnjWFGaT9BxjCtCQAlFDtEEhBCaMThC-s5_-brrG98OWVdlw4fPuu_1u2_t0IWbrLdxmGV98DEBs8y2LqvGYQz-BB1Uto7-dNen6O3h_nX-hBcvj8_z2wUuGZUD5pZopwVI7phySlJKnAJbsEopzqQU1DlGC5IzyrUmJRUctE17wauyZAWbosutbx-6z9HHwTTLWPq6tq3vxmikIjpXXP0LgmJAc0kSePEHXHVjaNMTBgAYT0V5omBLlaGLMfjK9GHZ2LA2QMwmfbNN3yQxm_SNTDfnO-exaLz7vdjFzX4A9xt8fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113413424</pqid></control><display><type>article</type><title>Development of the oxygenator: past, present, and future</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Iwahashi, Hidehiko ; Yuri, Koichi ; Nosé, Yukihiko</creator><creatorcontrib>Iwahashi, Hidehiko ; Yuri, Koichi ; Nosé, Yukihiko</creatorcontrib><description>From the 1950s to the 1980s, the most widely used oxygenator in the clinical field was the disposable bubble oxygenator. However, membrane oxygenators have become the preferred clinical choice over the years. In the United States, membrane oxygenators used in cardiopulmonary bypass operations account for the majority of clinical oxygenator use. Membrane oxygenators have an equal capability for oxygenating venous blood compared with other type of oxygenators such as the bubble type and film type; however, the membrane oxygenator requires a smaller volume for priming to achieve a sufficient gas transfer rate and results in less blood trauma such as hemolysis because it uses a similar mechanism to the natural lung. In the 1980s, the first capillary-type oxygenator adopted the system of intracapillary blood perfusion. However, this induced high pressure resistance in the module and caused hemolysis. Thus, at present, capillary oxygenators commonly adopt the system of extracapillary blood perfusion. Microporous hollow-fiber membranes are primarily used for short-term cardiopulmonary bypass application, whereas nonmicroporous hollow-fiber membranes are primarily used for long-term extracorporeal membrane oxgenation application.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-004-0268-6</identifier><identifier>PMID: 15558331</identifier><language>eng</language><publisher>Japan: Springer Nature B.V</publisher><subject>Cardiopulmonary Bypass ; Equipment Design ; Extracorporeal Membrane Oxygenation ; History, 20th Century ; Humans ; Oxygenators - history ; Oxygenators, Membrane - history ; Pulmonary Gas Exchange ; Surgical apparatus & instruments</subject><ispartof>Journal of artificial organs, 2004-09, Vol.7 (3), p.111-120</ispartof><rights>The Japanese Society for Artificial Organs 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-4a08d85164d37d76220d71ab3f77436652dd32b09324880c25418aab354fcc3b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15558331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwahashi, Hidehiko</creatorcontrib><creatorcontrib>Yuri, Koichi</creatorcontrib><creatorcontrib>Nosé, Yukihiko</creatorcontrib><title>Development of the oxygenator: past, present, and future</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><description>From the 1950s to the 1980s, the most widely used oxygenator in the clinical field was the disposable bubble oxygenator. However, membrane oxygenators have become the preferred clinical choice over the years. In the United States, membrane oxygenators used in cardiopulmonary bypass operations account for the majority of clinical oxygenator use. Membrane oxygenators have an equal capability for oxygenating venous blood compared with other type of oxygenators such as the bubble type and film type; however, the membrane oxygenator requires a smaller volume for priming to achieve a sufficient gas transfer rate and results in less blood trauma such as hemolysis because it uses a similar mechanism to the natural lung. In the 1980s, the first capillary-type oxygenator adopted the system of intracapillary blood perfusion. However, this induced high pressure resistance in the module and caused hemolysis. Thus, at present, capillary oxygenators commonly adopt the system of extracapillary blood perfusion. Microporous hollow-fiber membranes are primarily used for short-term cardiopulmonary bypass application, whereas nonmicroporous hollow-fiber membranes are primarily used for long-term extracorporeal membrane oxgenation application.</description><subject>Cardiopulmonary Bypass</subject><subject>Equipment Design</subject><subject>Extracorporeal Membrane Oxygenation</subject><subject>History, 20th Century</subject><subject>Humans</subject><subject>Oxygenators - history</subject><subject>Oxygenators, Membrane - history</subject><subject>Pulmonary Gas Exchange</subject><subject>Surgical apparatus & instruments</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLAzEQhYMoVqs_wBdZEHxqNJP7-ib1CgVf9DlkN1lt2ZvJrth_b0oLgi_CcGZgvjkwB6EzIFdAiLqOSbnCSTChUmO5h45AQo5JTvh-mjnjWFGaT9BxjCtCQAlFDtEEhBCaMThC-s5_-brrG98OWVdlw4fPuu_1u2_t0IWbrLdxmGV98DEBs8y2LqvGYQz-BB1Uto7-dNen6O3h_nX-hBcvj8_z2wUuGZUD5pZopwVI7phySlJKnAJbsEopzqQU1DlGC5IzyrUmJRUctE17wauyZAWbosutbx-6z9HHwTTLWPq6tq3vxmikIjpXXP0LgmJAc0kSePEHXHVjaNMTBgAYT0V5omBLlaGLMfjK9GHZ2LA2QMwmfbNN3yQxm_SNTDfnO-exaLz7vdjFzX4A9xt8fw</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Iwahashi, Hidehiko</creator><creator>Yuri, Koichi</creator><creator>Nosé, Yukihiko</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Development of the oxygenator: past, present, and future</title><author>Iwahashi, Hidehiko ; Yuri, Koichi ; Nosé, Yukihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-4a08d85164d37d76220d71ab3f77436652dd32b09324880c25418aab354fcc3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cardiopulmonary Bypass</topic><topic>Equipment Design</topic><topic>Extracorporeal Membrane Oxygenation</topic><topic>History, 20th Century</topic><topic>Humans</topic><topic>Oxygenators - history</topic><topic>Oxygenators, Membrane - history</topic><topic>Pulmonary Gas Exchange</topic><topic>Surgical apparatus & instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwahashi, Hidehiko</creatorcontrib><creatorcontrib>Yuri, Koichi</creatorcontrib><creatorcontrib>Nosé, Yukihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwahashi, Hidehiko</au><au>Yuri, Koichi</au><au>Nosé, Yukihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the oxygenator: past, present, and future</atitle><jtitle>Journal of artificial organs</jtitle><addtitle>J Artif Organs</addtitle><date>2004-09</date><risdate>2004</risdate><volume>7</volume><issue>3</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>From the 1950s to the 1980s, the most widely used oxygenator in the clinical field was the disposable bubble oxygenator. However, membrane oxygenators have become the preferred clinical choice over the years. In the United States, membrane oxygenators used in cardiopulmonary bypass operations account for the majority of clinical oxygenator use. Membrane oxygenators have an equal capability for oxygenating venous blood compared with other type of oxygenators such as the bubble type and film type; however, the membrane oxygenator requires a smaller volume for priming to achieve a sufficient gas transfer rate and results in less blood trauma such as hemolysis because it uses a similar mechanism to the natural lung. In the 1980s, the first capillary-type oxygenator adopted the system of intracapillary blood perfusion. However, this induced high pressure resistance in the module and caused hemolysis. Thus, at present, capillary oxygenators commonly adopt the system of extracapillary blood perfusion. Microporous hollow-fiber membranes are primarily used for short-term cardiopulmonary bypass application, whereas nonmicroporous hollow-fiber membranes are primarily used for long-term extracorporeal membrane oxgenation application.</abstract><cop>Japan</cop><pub>Springer Nature B.V</pub><pmid>15558331</pmid><doi>10.1007/s10047-004-0268-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-7229 |
ispartof | Journal of artificial organs, 2004-09, Vol.7 (3), p.111-120 |
issn | 1434-7229 1619-0904 |
language | eng |
recordid | cdi_proquest_miscellaneous_67089747 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Cardiopulmonary Bypass Equipment Design Extracorporeal Membrane Oxygenation History, 20th Century Humans Oxygenators - history Oxygenators, Membrane - history Pulmonary Gas Exchange Surgical apparatus & instruments |
title | Development of the oxygenator: past, present, and future |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20oxygenator:%20past,%20present,%20and%20future&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Iwahashi,%20Hidehiko&rft.date=2004-09&rft.volume=7&rft.issue=3&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-004-0268-6&rft_dat=%3Cproquest_cross%3E2793401791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113413424&rft_id=info:pmid/15558331&rfr_iscdi=true |